

# Trafiic and Transport Study 

Request for Planning Proposal
1055 Bruxner Highway, Goonellabah
Prepared for: Nimble Estates Pty Ltd

November 2022

File ref: 220615-R305 1055 Bruxner- Traffic and Transport Study.docx

ENGINEERING
PLANNING
© C opyright Barker Ryan Stewart Pty Ltd 2022 All Rights Reserved

| Project No. | 220615 |
| :--- | :--- |
| Author | JH |
| Checked | AN |
| Approved | GB |


| Rev No. | Status | Date | Comments |
| :--- | :--- | :--- | :--- |
| 3 | Final | $08 / 10 / 22$ | FS comments 07/10/22 |
| 4 | Draft | $02 / 11 / 22$ | Issue to Nimble Estates |
| 5 | Final | $04 / 11 / 22$ |  |

## COPYRIGHT

Barker Ryan Stewart reserves all copyright of intellectual property in any or all of Barker Ryan Stewart's documents. No permission, licence or authority is granted by Barker Ryan Stewart to any person or organisation to use any of Barker Ryan Stewart's documents for any purpose without the written consent of Barker Ryan Stewart.

## REPORTDISC LAIMER

This report has been prepared for the client identified in section 1.0 only and cannot be relied on or used by any third party. Any representation, statement, opinion or advice, expressed or implied in this report is made in good faith but on the basis that Barker Ryan Stewart are not liable (whether by reason of negligence, lack of care or otherwise) to any person for any damage or loss whatsoever which has occurred or may occur in relation to that person taking or not taking (asthe case may be) action in any respect of any representation, statement, or advice refered to above.


## Table of Contents

1 Exec utive Summary ..... 1
2 Introduction ..... 2
2.1 Development Context ..... 2
2.1.1 Residential Land .....  3
2.1.2 Employment La nd .....  3
2.1.3 Open Space Land .....  3
2.1.4 Traffic and Transport Matters ..... 3
2.2 Purpose of Report ..... 3
3 Existing Conditions ..... 4
3.1 Site Location ..... 4
3.2 Existing Development ..... 6
3.3 Road Conditions. ..... 6
3.3.1 Existing Conditions ..... 6
3.3.2 Strategic Context .....  6
3.4 Traffic Flows and Volumes ..... 6
3.5 Public Transport, Pedestria ns and Cyclists ..... 9
3.5.1 Existing Public Transport, Pedestria ns and Cyclists .....  9
3.5.2 Strategic Context ..... 9
4 Proposed Development. ..... 10
4.1 Development Description ..... 10
4.2 Parking Provision ..... 11
4.3 Access and Circulation ..... 11
4.4 Pedestrian and Cycle Paths ..... 11
5 Street Character, Access and Car Parking Assessment ..... 12
5.1 Parking requirements ..... 12
5.1.1 Lismore DCP 2012 ..... 12
5.1.2 RMS ‘Guide to Traffic Generating Developments’ 2002 ..... 13
5.2 Loading Requirements ..... 13
5.2.1 Lismore DCP 2012 ..... 13
5.2.2 RMS ‘Guide to Traffic Generating Developments’ 2002 ..... 13
5.3 Street Character and Access ..... 14
5.3.3 Residential Subdivision ..... 14
5.3.4 Industrial Subdivisions ..... 15
6 Traffic Impact Assessment ..... 16
6.1 Intersections modelled ..... 16
6.2 Thip Generation ..... 17
6.2.5 Existing Development ..... 17
6.2.6 Proposed Development ..... 17
6.2.7 Approved and Proposed Developments ..... 18
6.3 Trip Distribution and Assignment ..... 19
6.4 SIDRA Analysis and Impact of Generated Traffic ..... 27
6.5 Impact of Construction Traffic ..... 28
6.6 Consultation with Transport for NSW ..... 29
6.6.8 Pre-lodegment Meeting with TfNSW ..... 29
6.6.9 Response to TFNSW requirements ..... 29
7 Conclusion ..... 30
8 References ..... 31

Ecoast@brs.com.au

## Appendices

AppendixA - Concept Plan
Appendix B - Traffic Network Diagrams
Appendix C - SCATS Data
Appendix D - Sidra Output Reports

## Abbreviations

## UEP.

Lismore Local Environmenta I Plan 2012
DCP
Lismore Development C ontrol Plan 2012
AS/NZS2890.1
.Austra lian Sta ndards, 'AS/NZS 2890.1:2004 Off-Street C ar Pa rking'
AS2890.2............................. Australian Standards, ‘AS 2890.2: 2018 Off-Street Commerc ial Vehicle Facilities' AS/NZS2890.6......... Australian Standards, 'AS/NZS 2890.6:2002 Off-Street Pa rking for People with Disabilities' RMS Guide Roads and Maritime Services ‘Guide to Traffic Generating Developments'

Ehunter@brs.com.au

## 1 Exec utive Summary

This Traffic and Transport Study has been prepared by Barker Ryan Stewart (BRS) to accompany a Request for Planning Proposal (Planning Proposal) to amend the Lismore Local Environmental Plan 2012 (ШЕP) to enable mixed use development of land referred to as 1055 Bruxner Highway, Goonellabah (the site) comprising residential, employment and public open space lands.

This report has been prepared to assess the traffic and transport implic ations, and parking requirements, associated with the proposed rezoning.

This report concludes that development enabled by the planning proposal can be accommodated appropriately on the site and will not result in any unacceptable adverse impacts. Key information supporting this conclusion is summa rised as follows:

- The Bruxner Highway currently runs on the northem edge of the site, with new collector roads and local roads being established within the site with access facilitated from Oliver Avenue. Note there will be no direct vehicle access from Bruxner Highway, it is proposed to provide three new intersections off Oliver Avenue to enable vehicle access to the site.
- The intemal street hierarchy will be established based on Lismore's DCP 2012 for Local Streets, Access Places and Lanes (where relevant). This will be detemined as part of the future Development Control Plan for the site.
- It is proposed to provide pedestrian and bicycle links along the length of Oliver Avenue from the Bruxner Highway in the north and to Holland Street/Taylor Road to the south. This will enable the proposed rezoned land to have pedestrian and bicycle links to an any existing orfuture pedestrian a nd bicycle paths in Bruxner Highway and Oliver Avenue to the south west of Holland Street/Taylor Road.
- Parking provision rates will be confimed aspart of the development of the DCP a nd will be applied for each individual development on the lots once they are created. They will generally be expected to follow Lismore DCP 2012 guidelines.
- The traffic impact of the proposed rezoning on the surrounding road network was assessed for va rious growth scenarios using SIDRA Intersection modelling software at the following intersections:
o Bruxner Highway / Oliver Avenue;
o Oliver Avenue / Holla nd Street; and
o Three new proposed intersections.
- The proposed rezoning is expected to generate an additional 914 trips and 939 trips during the AM and PM peak, respectively. SIDRA intersection analysis indicates all the a nalysed intersections generally operate at high levels of service with acceptable average delaysduring the existing and 10-year growth scenarios with the additional development traffic. No modifications or improvements a re required to the existing configurations of the intersections of Oliver Avenue with Bruxner Highway and Holland Street.
- The intersection a nalysis of the proposed access roads with Oliver Avenue also suggests one traffic lane in each direction is sufficient to cater for the development traffic in Oliver Avenue. These intersections can operate at an acceptable level of service as priority controlled (sign controlled) intersections both in post development and 10-year growth scenario.


## 2 Introduction

### 2.1 Development Context

This Traffic and Transport Study report hasbeen prepared by BarkerRyan Stewart to ac company a Request for Planning Proposal (Planning Proposal) to amend the Lismore Local Environmental Plan 2012 (LEP) to enable mixed use development of land referred to as 1055 Bruxner Highway, Goonellabah (the site) comprising residential, employment and public open space lands

The site at 1055 Bruxner Highway has an area of approximately 76ha and is located adjoining existing urban development on the eastem fringe of Goonellabah. The site comprises two a llotments being Lot 42 DP868366 and Lot 1 DP957677 and benefits from frontages to the Bruxner Highway to the north and Oliver Avenue to the west. The site is zoned RU1 Primary Production and has been used for many years for grazing purposes and is largely cleared of vegeta tion except for remna nt trees dispersed across the site. The property is bisected by Tucki Tucki creek with several minor watercourses feeding into it. The site is free from flooding.

The Planning Proposal seeks to a mend the ШEP as follows:

- Rezone the site from RU1 Primary Production to the following mix of la nd use zones:
o R1 General Residential.
o B4 Mixed Use.
o RE1 Public Recreation.
o IN1 General Industrial.
- Amend the Lot Size Map (Sheet LSZ_005 and Sheet LSZ_006) to remove the current minimum lot size requirement of 40 ha and 20ha and impose the following minimum lot sizes:
o R1 zoned land: a minimum lot size of 300 m 2
o B4 zoned land to the north of Tucki Tucki c reek: a minimum lot size of 300 m 2
o B4 zoned land to the south of Tucki Tucki creek: a minimum lot size of $1,500 \mathrm{~m} 2$
o IN1 zoned land: a minimum lot size of $1,500 \mathrm{~m} 2$
- Amend the ШЕP 2012 Height of Building Map (Sheet HOB_005 and Sheet HOB_006) to impose the following maximum height of building control (excluding the RE1 and IN1 zoned land):
o B4 zoned land to the north of Tucki Tucki c reek: maximum building height of 13.5 m
o R1 zoned land: maximum building height of 8.5 m

Changesto the planning controls facilitate the potential development of the site to accommodate a diversity of new housing, employment, a nd public open space opportunities in an environmentally and soc ia lly susta ina ble environment.

An Indic ative La yout Plan (ILP), informed by detailed technic al investigations into the characteristic s of the site and adjoining land along with a vailable servicing and community infrastruc ture, confims the capacity to accommodate urban development comprising the following:

- Approximately 346 residential and mixed use zoned allotments capable of accommodating a variety of housing forms and densities with an estimated population of over 855 residents.
- Approximately 105 allotments zoned industrial and mixed use capable of supporting a variety of employment generating and service activities with an associated potential 2,614 direct jobs.
- Provision of over 14ha of the site to open space comprising land zoned and utilised for public recreation along with riparian comidors and landscape buffers.


### 2.1.1 Residential Land

The proposed residential zoned land has the capacity to facilitate approximately 346 allotments ranging in size from $200 \mathrm{~m}^{2}$ to $600 \mathrm{~m}^{2}$ to accommodate low density detached housing and various forms of multidwelling accommodation.

### 2.1.2 Employment Land

The proposed employment land comprising industrial zoned land (23.27 hectares), mixed business zoned land ( 2.76 hectares) a nd local centre zoned land (5,000m²).

### 2.1.3 Open Space Land

The proposed open space on the site being reserved as RE1 Public Recreation will comprise of dedic ated niparian comidors and a local open space amounting to approximately 14ha of land. This will also be benefited by the proposed landscape buffers.

### 2.1.4 Traffic and Transport Matters

Relating to traffic and transport matters, the Bruxner Highway currently runs through the site, with new collectorroadsand localroadsbeing established within the site with accessfacilitated from OliverAvenue. Note there will be no direct vehicle access from Bruxner Highway. Moreover, it is to be considered aspart of the catchment for a potential Casino to Murwillumbah public transport comidor, in active disc ussion with TFNSW. It will a lso form part of the consideration for Lismore City Council's Strategic Road Review.

### 2.2 Purpose of Report

The pupose of this report is to assess and address traffic, access, carparking and pedestrian and bicycle opportunities and impacts generated by the proposed development. This can be briefly outlined as follows:

- The expected traffic generation to/from the proposed development.
- The impact of the proposed development on the road network.
- Infrastructure upgrades to the road network.
- Intersection analysis based on traffic counts.
- Vehic le parking provisions.
- Access design requirements.
- Provision for pedestria ns and cyc lists.
- Ava ila bility of public transport.

This Traffic and Transport Study concludes that the subject site is suitable for the proposed development in relation to traffic impact, carparking provision, vehicle and pedestrian access a nd safety considerations.

## 3 Existing Conditions

### 3.1 Site Location

The site is located in Lismore City Council a nd comprises of the following lots:

-     - Lot 42/DP868366 \&
-     - Lot 1/DP957677

The site is bound by Oliver Avenue to the west and Bruxner Highway runsthrough the site to the north. The site is a pproximately 84.6 hectares in size.


Figure 3.1: Site Location


Figure 3.2: Proposed Site Zoning

### 3.2 Existing Development

The existing site is a greenfield site. It is sumounded by residential developments to the west and agricultural developments to the north, south and east.

### 3.3 Road Conditions

### 3.3.1 Existing Conditions

A schedule of the existing conditions is outlined in Table 3.1.
Table 3.1: Existing Road Conditions Sc hedule

| Road Name | Road Class | Orientation | Speed | Parking | Footpaths |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bruxner <br> Highway | Arterial | East-West | 年 $60 \mathrm{~km} / \mathrm{h}$ | Not Permitted | None |
| Oliver <br> Avenue | Collector | North-South | Unsigned <br> $(60 \mathrm{~km} / \mathrm{h})$ | No Restrictions | None |
| Pineapple <br> Road | Local | North-South | Unsigned <br> $(60 \mathrm{~km} / \mathrm{h})$ | No Restrictions | None |

### 3.3.2 Strategic Context

As part of the Lismore Strategic Road Review, prepared by TTM Consulting Pty Ltd (2013), Lismore Council hasengaged separate review and investigation of the future road requirements for the Lismore urban and rural areas. Additionally, the report follows the Bruxner Highway Comidor Study (2009). The intersection of Oliver Avenue, Bruxner Highway and Pineapple Road has been suggested for an intersection upgrade within a 10 Y period from 2009. In 2014, the intersection was upgraded from an unsignalized intersection to a roundabout.

### 3.4 Traffic Rows and Volumes

Classified intersection counts have been performed on the $1^{\text {st }}$ of September 2022 for the weekday peaks between 7:30AM and 9:30AM and 3:45PM and 4:45PM at the following intersections:

- Bruxner Highway \& Oliver Avenue, and
- Oliver Avenue \& Taylor Road

Generally, it was observed that BruxnerHighway camied a pproximately 2,100vph - $2,200 \mathrm{vph}$ during the site peak. Near Bruxner Highway, Oliver Avenue camied some 90 vehicles per hour, a nd near Holland Street. Oliver Avenue camies 600vph - 650vph. Holland Street camied some 500vph - 600vph during peak. The actual surveyed tuming movement counts are shown in the following Figure 3.4 to Figure 3.7.


Figure 3.4: Intersection Count, Bruxner Highway/Oliver Avenue, Moming Peak


Figure 3.5: Intersection Count, Bruxner Highway/Oliver Avenue, Aftemoon Peak


Figure 3.6: Intersection Count, OliverAvenue/Holland St, Moming Peak



Figure 3.7: Intersection Count, OliverAvenue/Holland St, Aftemoon Peak

### 3.5 Public Transport, Pedestrians and Cyclists

### 3.5.1 Existing Public Transport, Pedestrians and Cyclists

The 661 bus route from Lismore to Ballina runs along Bruxner Highway and has a stop near the site. It runs quite infrequently with one bus every 30 minutes in moming peak, and one bus for the aftemoon peak. One bus runs every hour in inter-peak and no buses run at night, a fter about 6:00PM.

As outlined in the road schedule above, the surrounding roads have no pedestrian pathways.

### 3.5.2 Strategic Context

Goonellabah is part of the catchment included in the Casino to Murwillumbah Transport Study (2013), which a ims to highlight the constra ints a nd opportunities associated with the repurposed/ revitalisation of the Casino to Murwillumbah Railway Line/ Coridor, by eitherestablishing a passenger rail service along the existing line, or using the comidor to form a bus route (as well as part-way solutions which include elements of each).

This study ultimately forms part of the Northem Rivers Regional Transport Plan, which acknowledges the requirement for improved public transport provisions:

- The region has a dispersed population, and dispersed social services
- The transport system is highly relia nt on private vehicle use
- The population is increasingly dependent, with low average socio-economic class which limits mobility
- Largening levels of transport disadvantage exacerbate the above issue
- Nevertheless, the Northem Rivers population is expected to continue to grow.

Ultimately, it is expected that the rail line be maintained at a minimum standard, and possibly parts of the rail comidor would instead be used to service bus routes. Generally, it can be expected that Countrylink buses are to be run at higher frequencies to facilitate future growth. The exact location of stops has yet to be determined but it can be expected that the site would be serviced by increased rail, as it is situated along the Bruxner Highway.

## 4 Proposed Development

### 4.1 Development Description

The proposed rezoning would consist of residential developments, industrial developments and open space. Table 4.1 below summarises the proposed development yield and associated facilities. The Proposed layout, as prepared by Urbis in 10 Aug 2022, is shown in Figure 4.1 below and attached to Appendix A.

Table 4.1: Proposed Development Yield

| Land Use | Yield |
| :---: | :---: |
| Residential | 346 lots (refer note) |
| Industrial | 23.27 hectares |
| Business | 2.76 hectares |
| Local Centre | $2,500 \mathrm{~m}^{2}$ GLFA |

Note: This report has been prepared on the basis of 364 lots a nd is thus additiona lly conservative


Figure 4.1: Proposed Rezoning Layout

### 4.2 Parking Provision

Parking provision rates will be confirmed as part of the development of the DCP and will be applied for each individual development on the lotsonce they are created. They will generally be expected to follow Lismore DCP 2012 guidelines and TFNSW Guide to Traffic Generating Developments 2002 (and the associated TDT2013/04a), outlined in Section 5 below.

### 4.3 Access and Circ ulation

Vehic ula raccess will be established via three intersectionsalong OliverAvenue, circled in Figure 4.1 above. A fourth intersection will be constructed as part of the development of an adjoining lot owned by others. They will be designed in accordance with Austroads guidelines and be suitable for the type and volume of vehicles modelled to use the intersection.

### 4.4 Pedestrian and Cycle Paths

Aspart of the proposed rezoning, new Development Control Plan and approval of the overall subdivision it is proposed to provide pedestrian and bic ycle links along the length of Oliver Avenue from the Bruxner Highway in the north and to Holland Street/Taylor Road to the south.

This will enable the proposed rezoned land to have pedestrian and bicycle linksto an any existing or future pedestrian and bicycle paths in Bruxner Highway and Oliver Avenue to the south west of Holland Street/Taylor Road.

## 5 Street Character, Acc ess and Car Parking Assessment

### 5.1 Parking requirements

The proposed parking provision for the different uses of the site will be in accordance with the Lismore DCP 2012 as outlined below:

### 5.1.1 Lismore DCP 2012

The Lismore DCP 2012 requires the following parking provisions:

- Residential Developments
o Single dwellings-2 carparking spaces set at least 5.5 m behind the Building Line
o Dualoccupancies:
- 1 perdwelling $<125 \mathrm{~m}^{2}$
- 2 perdwelling $>125 \mathrm{~m}^{2}$
o Multi-dwelling housing:
- 1 space per 1 bedroom unit,
- 1.5 spaces per 2 bedroom unit, and
- 2 spacesper 3+bedroom unit, and
- 1 visitor space per 5 bedroom units
- Industrial Developments
o Bulky Goods Premises:
- If $\leq 400 \mathrm{~m}^{2}$ GFA, 3 spaces per $100 \mathrm{~m}^{2}$
- If $>400 \mathrm{~m}^{2}$ GFA, 2 spaces per $100 \mathrm{~m}^{2}$

0 Business Premises (a nc illa ry):

- 1 space per $30 m^{2}$ for G or $1^{\text {st }}$ floor
- 1 space per $40 m^{2}$ for $2+$ floor
- Min. 2 spaces per office
o Electricity Generating Works: 1 space per 2 employees
o Extractive Industry: 1 space per employee
o Industry (heavy, general a nd light):
- 1 space per $100 m^{2}$ G FA orpart thereof,
- Min. 2 spaces per unit or separate leased area
o Industry (house/ carrecycling yard): 2 spacesper 2 employees, plus 1 space per $200 \mathrm{~m}^{2}$ site area
o Landscaping material supplies: 1 space per $100 \mathrm{~m}^{2}$ display area, plus 1 space per 2 employees
o Rural industry: 1 space per 2 employees or 1 space per $100 \mathrm{~m}^{2} \mathrm{GFA}$, whic hever is greater
o Self-storage units: 1 space per 20 sheds, plus 1 space per 2 employees
o Transport depot: 1 truck space for each truck, associated with the development, plus 1 per driver, plus 1 space per 2 onsite employees,
o Vehicle body repair workshop: 4 spaces per work bay, plus 1 space peremployee
o Vehicle Repair Station: 4 spaces per work bay, plus 1 space per employee
o Vehic le Sales or Hire Premises: 1.5 spaces per $200 \mathrm{~m}^{2}$ display area, plus 1 per 2 employees, plus 4 per workbay
o Warehouse or Distribution Centre: 1 space per $300 \mathrm{~m}^{2}$

On-street parking on local roads is expected for the minimum of one side of the street for 2.5 m width. For collector roads, parking should be provided on both sides.

### 5.1.2 RMS ‘Guide to Traffic Generating Developments' 2002

Note that the RMS ‘Guide to Traffic Generating Developments’ 2002 Section 5 outlinesthe following parking provisions:

- Residential - Regional Area
o Single dwellings-1 to 2 carparking spaces
o Dual occupancies-2 carparking spaces
o Medium density residential flat build ings:
- 1 space perdwelling and
- 1 visitor space per 5 dwellings
- Commercial-1 space / $40 m^{2}$ GFA
- Industrial Developments:
o Car Tyre Retail Outlets: 3 spaces per $100 \mathrm{~m}^{2}$ GFA or 3 spaces per work bay (whichever is greater)
o Factory: 1.3 spaces per $100 \mathrm{~m}^{2}$
o Warehouse: 1 space per $300 \mathrm{~m}^{2}$
o Plant Nurseries: 0.5 spaces per $100 \mathrm{~m}^{2}$ G FA or 15 spaces, whic hever is greater
o Business Park:
- 1.5 spaces per $100 m^{2}$ total GFA, or
- 1.8 spaces per $100 m^{2}$ office GFA, and 1.2 spaces per $100 m^{2}$ ind ustrial G FA.


### 5.2 Loading Requirements

### 5.2.1 Lismore DCP 2012

The Lismore DCP 2012 outlines the loading size requirements of different industrial developments. These are separated by spaces for size of vehicle. Sta ndard sizes are as follows:

- 6.4 m Small Rigid Vehic le (SRV)
- 8.8 m Medium Rigid Vehicle (MRV)
- 12.5 m Heavy Rigid Vehicle (HRV)
- 19.0 m Articulated Vehicle (AV)

Note that no rates are provided for the number of loading docks with the required number assessed as part of the documentation provided with each development application, including the Traffic Impact Assessments. The loading bay provisions are reproduced below:

- Bulky Goods Premises:
o If $\leq 1,000 \mathrm{~m}^{2}$ GFA, spaces designed for 12.5 m HRVs
o If $>1,000 \mathrm{~m}^{2}$ GFA, spacesdesigned for 19.0 m AVs
- Extractive Industry: space for 19.0 m AVs
- Industry (heavy, general and light): Spaces designed for 12.5 m HRVs
- Industry (house/ carrecycling yard): Spaces designed for 12.5 m HRVs
- La ndscaping material supplies: Spaces designed for 12.5 m HRVs
- Rural industry: Spaces designed for 19.0m AVs
- Self-stora ge units: Spaces designed for 12.5m HRVs
- Transport depot: Spaces designed for 19.0m AVs
- Vehic le Sales or Hire Premises: Spaces designed for 19.0 AVs
- Warehouse or Distribution Centre: Spaces designed for 19.0 AVs


### 5.2.2 RMS 'G uide to Traffic Generating Developments' 2002

The wholesale and industrial rate for developments $<8,000 m^{2}$ GFA is 1 loading bay space per $800 \mathrm{~m}^{2}$. For developments $>8,000 \mathrm{~m}^{2}$, 10 spaces would be required, plus 1 space per $1,000 \mathrm{~m}^{2}$ over $8,000 \mathrm{~m}^{2}$.

### 5.3 Street Character and Access

### 5.3.1 Residential Subdivision

The intemal street hierarchy a s outlined in Lismore DCP 2012 is as follows:

- Collector Street - high-capacity roads facilitation more than 3,000 vpd.
- Local Streets - residential streets facilitating between 1,000 vpd and 3,000 vpd.
- Access Places - a lower-order residential street with less than 750 vpd.
- Lanes-Two-way access to the rear of properties as required.

Their street characteristics are outlined in Table 5.1 below:
Table 5.1: Street Class and Characteristics (Residential)

| Street Type | Lane | Access Place | Local Sreet | Collector |
| :---: | :---: | :---: | :---: | :---: |
| Reserve Width | 7.0m | 14.0m | 15.0m-15.5m | 24.5m |
| Camiageway Width | 6.0 m | 6.0 m | 7.0m-8.5m | 16.5 m (or 12.0 m if cycleways are on footpaths) |
| Active Transport Provisions | No | No | No | Footpa ths to be included. Cycleways either on footpath or 1.5m clearance on camiageway, either side. |
| Target Speed Environment | 10km/h | $20 \mathrm{~km} / \mathrm{h}$ | $20 \mathrm{~km} / \mathrm{h}$ | $40 \mathrm{~km} / \mathrm{h}$ |
| Intersection Spacing | 80.0m | 80.0m | 100.0m | 120.0m |

At the formation of the Development Control Plan the approved road network hierarchy will be established. The detailed design and construction of the roads will form part of the development application(s) for the residential subdivision.

Note that the road network design should be such that, either by positioning lots or by altering bus routes, that at least $85 \%$ of lots are within a safe 5 -minute walking time from an existing or proposed bus route where possible.

### 5.3.2 Industrial Subdivisions

Similarly, industrial street hierarchy is outlined in Table 5.2 below. Lanes are not appropriate for industrial developments due to the high volume of commercial vehic les expected.

Table 5.2: Street Class and Characteristics (Industrial)

| Street Type | Access Place | Local Street | Collector |
| :---: | :---: | :---: | :---: |
| Reserve Width | 18.0 m | 20.0 m | 20.0 m |
| Camiageway Width | 9.5 m | 12.0m | 13.0m |
| Active Transport Provisions | 3.0 m footpath on one side, on-road cycle lane | 3.0 m footpaths on both sides, on-road cycle lane | 3.5 m footpaths on both sides <br> Dedicated cycle lane |
| Target Speed Environment | 10km/h | 40km/h | $60 \mathrm{~km} / \mathrm{h}$ |

At the formation of the Development Control Plan the approved road network hierarchy will be established. The detailed design and construction of the roads will form part of the development applic ation(s) for the industrial subdivision.

## 6 Traffic ImpactAssessment

### 6.1 Intersections modelled

The traffic impact of the proposed rezoning on the surrounding road network was assessed using SIDRA Intersection modelling software. The traffic counts outlined in Section 3.4 and traffic generation estimated below in Section 6.1 were used to determine an overall traffic level for the area post-development. Ba sed on their c ritic al loc ations, the following intersections were analysed:

- Bruxner Highway / Oliver Avenue;
- Oliver Avenue / Holla nd Street; and
- Three new proposed intersections.

The loc ation of these intersections and the la yout of the surrounding traffic network are shown in the figure 6.1 below.


Figure 6.1: Site and critic al intersections locations (source: NearMap September 2022)

### 6.2 Trip Generation

### 6.2.1 Existing Development

The existing site is a vacant land, therefore the trip generation for the existing site is nil.

### 6.2.2 Proposed Development

The RMS "Tec hnic al Direction for traffic, safety and transport practitioners - operational polic y, guidelines a nd advice' (TDT2013/04a) has been used to estimate trip generation potential of the site fordifferent uses proposed as part of the rezoning. TDT 2013/04a suggests an average evening peak hour vehicle trip rate of 0.78 perdwelling and an average moming peak hourvehicle trip rate of 0.71 perdwelling for low density residential dwellings in regional a reas.

Due to the absence of any floor space ratio for the site forming part of the Planning Proposal, the Gross Leasable Floor Area (GLFA) or Gross Floor Area (GFA) for the proposed industrial/business uses and local centre are not aviable and therefore the GLFA or GFA rates as outlined in TDT 2013/04a could not be applied to estimate the traffic generation rates.

However, in Appendix E of TDT2013/04a the surveyed data for different business a nd industrial park have been given, form where the average surveyed trips rate based on site area per hectare for non-Sydney a reas hasbeen used to calculate the trip generation potential for the industrial and business la nd uses. The a verage estimated trip rates per hectare of site area for non-Sydney area is calculated to be 18 trips per hour perhectare.

Simila rly, from Append ix F3 of TDT2013/04a, the highest peak hour vehicle trips per 100m2 of G LFA surveyed in a regional area shopping centre has been used to estimate trip generation potential of the proposed local centre, which is 7.48 trips per 100 m 2 of GLFA. Due to the absence of floor spaces ratio, it is assumed that $1 / 2$ of the site area for the proposed local centre could potentially be the GLFA once constructed. This takes into consideration setbacks, car parking lot, hard stand area for loading and unloading, and landscape requirements for the local centre.

The estimated trips generation potential of the proposed rezoning is summarised in Table 6.1 below.
Table 6.1: Proposed uses - trip generation

| Use | Yield | AM |  | PM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tip Generation Rate | Total Tip Generation | Tip Generation Rate | Total Tip Generation |
| Residential | 364 lots | 0.71 trips perdwelling | 258 trips | 0.78 trip s perdwelling | 284 trips |
| Industrial | 23.27 Ha | 18 trips per Ha | 419 trips | 18 trips per Ha | 419 trips |
| Business | 2.76 Ha | 18 trips per Ha | 50 trips | 18 trips per Ha | 50 trips |
| Local centre | $\begin{gathered} 2,500 \mathrm{~m}^{2} \\ \text { GLFA } \\ \text { (1/2 of } \\ \text { the site } \\ \text { area) } \end{gathered}$ | 7.48per 100m² GLFA | 187 trips | 7.48per 100m² GLFA | 187 trips |
| Total | - | - | 914 trips | - | 940 trips |

The additional trips that could be generated by the proposed rezoning are therefore:

- AM trips $=914$ trips
- PM trips = 940 trips


### 6.2.3 Approved and Proposed Developments

Publicly available infomation indicated that Lismore City Council has approved an applic ation to create 82 residential lots at Goonellabah located in Pineapple Road Precinct. The approval is for a staged subdivision within the Pineapple Rd Precinct.

The first stage included 22 large lot residential blocks off Richmond Hill Rd; stage two would be 15 general residential lots accessed via Pineapple Rd and Misty Valley View; and stage three would be 45 general residential lots.


Figure 6.2: Approved Development site (source: The Daily Telegraph and NortehmStar)
It is assumed that traffic generated from the stage 2 and stage 3 of the approved subdivision will use Pineapple Road to ga in access. Therefore, a total 60 residential lots will gain access via Pineapple Road. The following number of peak hour trips have been calculated, for the approved developments adjacent to the proposed rezoning site, that will have impact on the intersection of Bruxner Highway and Oliver Avenue:

Table 6.2: Approved use - trip generation

| Use | Yield | AM |  | PM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tip Generation Rate | Total Tip Generation | Tip Generation Rate | Total Tip Generation |
| Residential | 60 lots | 0.71 trips perdwelling | 43 trips | 0.78 trip s perdwelling | 47 trips |
| Total | - | - | 43 trips | - | 47 trips |

### 6.3 Thip Distribution and Assignment

This section outlines the methodology used to distribute and assign the trips that will be generated to the surrounding road network by the approved developments in the a rea and the proposed rezoning of 1055 Bruxner Highway.

- The likely trip distribution of the a dditional number of residential a nd industrial/commercial vehicular trips from and adjacent to the development site is based on the ABS joumey-to-work data for residents tra velling to work from the Goonellabah and people tra velling to Goonellabah for work.
- The trip generation has been adjusted to mode shift target of $5 \%$ trips by public and active transport.
- For residential trips, the proportion of vehicles leaving a nd a riving the area in the AM peak hour has been assumed as an 80 percent (leaving) / 20 percent (a riving) split. During the PM peak hour, this proportion is reversed, with 80 percent a riving and 20 percent lea ving the site.
- For industrial/commercial trips, the proportion of vehicles leaving from and arriving to the area in the AM peak hour has been assumed as an 80 percent (a riving) / 20 percent (leaving) split. During the PM peak hour, this proportion is reversed, with 20 percent a riving and 80 percent leaving the site.
- For Local Centre trips, the proportion of vehicles leaving from and arriving to the area has been assumed as a 50 percent (leaving) / 50 percent (a miving) split in both the AM and PM peak hours.
- Surveyed tuming movements at the intersection of Oliver Avenue/ Bruxner Highway and Oliver Avenue/ Holland Street will be redistributed assuming the bridge in Oliver Avenue is complete and open to traffic.
- It is assumed that 90\% of the existing trips in Oliver Avenue West, Taylor Road North and Holland Street South a pproa c hes at the intersection of OliverAvenue a nd Holla nd Street will be redistributed via Oliver Avenue East a link between Bruxner Highway East and Oliver Avenue West and Taylor Road North.
- Base intersection models have been developed using redistributed traffic at the intersection of Oliver Avenue/ Bruxner Highway and Oliver Avenue/ Holla nd Street assuming the bridge in Oliver Avenue is complete and open to traffic.
- The base and development scenario models have been projected to future years using a $1.7 \%$ lineargrowth rate for the background traffic. (ref: Lismore to Ba ngalow Draft C oridor Strategy 2016)
- The following future scenarios have been investigated:
o Base-case without the development traffic, projected to full development year
o Base-case plus development traffic including approved Pineapple Road Precinct traffic, projected to full development year
o Base-case without the development traffic, projected to 10 years after full development year
o Base-case plus the development traffic including approved Pineapple Road Precinct traffic, projected to 10 years after full development year

The Census provides joumey to work data that has been used as guide for assigning trips to the network. The following distribution pattems have been calculated using ABSJ oumey to Work data for Goonellabah.


Figure 6.3: Joumey to Work from Goonellabah (outgoing) (Source: Australian Bureau of Statistic s)


Figure 6.4: Joumey to Work to Goonella bah (Incoming) (Source: Australian Bureau of Statistic s)
Consequently, with the existing trips redistributed, the trips generated by the approved and the proposed rezoning have been assigned to the surrounding network based on the methodology discussed above and using the Joumey to work distribution pattems as relevant to the type of land uses. The resultant traffic movements at the intersections along Oliver Avenue, including the proposed new access road intersections, have been shown in the following Figures 6.5 to Figure 6.14 below.


Figure 6.5: Existing redistributed trips (AM Peak)


Figure 6.6: Total residential a ssigned trips (AM Peak)


Figure 6.7: Local centre a ssigned trips(AM Peak)


Figure 6.8: Industrial and business a ssigned trips (AM Peak)


Figure 6.9: Cumulative existing and proposed assigned trips (AM Peak)


Figure 6.10: Existing redistributed trips (PM Peak)


Figure 6.11: Total residential assigned trips (PM Peak)


Figure 6.12: Local centre a ssigned trips (PM Peak)


Figure 6.13: Industrial a nd business a ssigned trips (PM Peak)


Figure 6.14: Cumulative existing and proposed assigned trips (PM Peak)

### 6.4 SIDRA Analysis and Impact of Generated Traffic

Intersection performance has been assessed using the SIDRA modelling software which uses the level of service (delay) model adopted by the Roads and Maritime Services (RMS) in NSW to assess intersection performance. Average delay is used to determine the level of service (LOS), which ranges from ' $A$ ' which is excellent service to ' $F$ ', with a LOS of ' $D$ ' being the minimum ideal performance.

The existing intersections as well as the proposed access road intersections with Oliver Avenue outlined at the start of Section 6 have been assessed for the full development stage and 10-yeargrowth scena riosfor AM and PM peak periods. A growth rate of $1.7 \%$ per annum has been applied to the surveyed and assigned traffic to obta in the 10-year growth volumes as a worst-case scenario.

The differences in intersection performance between the existing, post full development and 10-year growth scenarios are summarised in the tables below. SIDRA output reports are available in Appendix D.

Table 6.3: Bruxner Highway / OliverAvenue SIDRA Modelling Summary


Table 6.4: Oliver Avenue / Holland Street SIDRA Modelling Summary


Table 6.5: OliverAvenue / Residential Access 1 SIDRA Modelling Summary

| OliverAvenue/ Residential Access 1 |  | Full developmentstage |  | 10-year growth scenario |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Existing Conditions | Post Development Condition | Existing Conditions | Post Development Condition |
| AM | Delay (s) | N/A | 1.2 | N/A | 1.6 |
|  | LOS | N/A | A | N/A | A |
| PM | Delay (s) | N/A | 1.0 | N/A | 1.2 |



Table 6.7: Oliver Avenue / Industrial Access SIDRA Modelling Summary


| Full develop |
| :---: |
| Existing Conditions |
| N/A |
| N/A |
| N/A |
| N/A |


| Post Development <br> Condition |
| :---: |
| 3.6 |
| A |
| 4.2 |
| A |

10-year growth scenario

| Existing Conditions | Post Development <br> Condifion |
| :---: | :---: |
| N/A | 4.0 |
| N/A | A |
| N/A | 5.3 |
| N/A | A |

As shown in the tables above, all the a nalysed intersections generally operate at high levels of service with acceptable average delays during the existing and 10-year growth scenarios with the additional development generated traffic.

Consequently, the additional development generated traffic is expected to have only a minorimpact on the queueing and delays experienced by motorists at these intersections in the existing and future scenarios. Therefore, no modifications or improvements are required to the existing configurations of the intersections of Oliver Avenue with Bruxner Highway and Holland Street.

The level of service forthe left tum from OliverAvenue to Bruxner Highway in the PM reduces to LoSE in the post development 10 year scenario, however, the maximum queue length will be only 15 vehicles so the impact is relatively minor.

The intersection analysis of the proposed access roads with Oliver Avenue also suggests that no more than one traffic lane in each direction is required in Oliver Avenue to accommodate the development traffic even in 10-year growth scenario. These intersections can operate at an acceptable level of service as a priority controlled (sign controlled) intersections both in post development and 10-yeargrowth scena rios.

### 6.5 Impact of C onstruction Traffic

The construction phase of the development will require the delivery of machinery, equipment and materialsto the site by a range of heavy vehiclesup to a 19 metre articulated vehicle. Accessto and from
the site will be restricted primarily to the major roads in the area, primarily Bruxner Highway and Oliver Avenue.

The management of construction traffic to and from the site can be provided in a separate Construction Traffic and Pedestrian Management Plan prepared as a requirement of a condition of consent at the Construction Certificate stage of the subdivisions/developments.

### 6.6 Consultation with Transport for NSW

### 6.6.1 Pre-lodegment Meeting with TiNSW

A meeting was held with Transport for NSW on Friday the $26^{\text {th }}$ of August 2022. The following minutes of the meeting were prepared by Transport for NSW and issued on the same day:

- LEP Making Guidelines, in partic ular Attachment B page 3 outlines matters for pre-lodgement consultation with ITNSW.
Link to Attachment B-https://www.planning.nsw.gov.au/-
/media/Files/DPE/Guidelines/Attachment-B-Interim-Authority-and-Govemment-Agency-
Planning-Proposal-PreLodgement-Referral-Checkl.pdf?la $=e n$
- TFNSW hasfunding committed to take the Bruxner Highway upgrade project through to Final Business Case. There is no curent funding for construction.
- TFNSW has undertaken modelling to inform the Strategic Business Case and is able to share the base Sidra model for the intersection of OliverAve and Bruxner Highway with the applic ant under a Deed.
- Applic ant to undertake further modelling to identify capacity of existing roundabout to caterfor the proposed development for a ten yeardesign horizon and what, if any, intersection upgrades are required.
- There may be a need to model various scenarios to understand infrastructure requirements, in relation to staging of lot release, to facilitate the full development.
- Depending on the outcome of the modelling there may (ormay not) be a need to secure infrastructure upgrades at specific staging triggers and this is best managed via a VPA.


## Next steps

1. TfNSW to prepare the draft Deed Poll and forward to Finn with cc to Glenn, Scott and Abdun.
2. Signed Deed Poll to be retum to TFNSW and TFNSW to share the base model.
3. BRS traffic consultant to prepare a scoping paper (including methodology, inputs, a ssumptions, scenarios, etc) for TFNSW review/a greement.
4. BRS to undertake traffic modelling and prepare Traffic Impact Assessment for review by TfNSW. Note it may be worthwhile meeting again for BRS to share the outcomes of the modelling prior to completing the report.

TFNSW encourages Council and the Proponent to complete scoping of traffic and transport impacts prior to the Gateway Determination to provide certainty of infra structure requirements and an understanding of any agreements required to support the PP.

### 6.6.2 Response to TifNSW requirements

In accordance with TFNSW request, we have undertaken additional modelling of various growth scenarios and prepared a Traffic and Transport Study, including ourscoping, outlining the results. This will assist TFNSW in their a ssessment of the traffic impacts of the proposed re-zoning on the Bruxner Highway.

Please note that at the time of writing this study we did not have TfNSW's base Sidra model for the intersection of Oliver Ave and Bruxner Highway available, we therefore undertook our own traffic counts and SIDRA modelling with the outcome of our traffic impact assessment outlined in Section 6 of this report.

## 7 Conclusion

This Traffic and Transport Study has been prepared in accordance with the requirements of the Lismore City Council DCP and the Roads and Maritime Services (RMS) 'Guide to Traffic Generating Developments' for a rezoning proposal. The proposal comprises of 346 residential lots (although 364 lots has been used in this a nalysis), 23.27 hec tares of industrial la nd, 2.76 hectares of business la nd, 5,000 $\mathrm{m}^{2}$ of local centre land and 14 hectares of Open Space.

The Bruxner Highway currently runs through the site, with new collector roads and local roads being established within the site with access facilitated from Oliver Avenue. Note there will be no direct vehicle a ccess from Bruxner Highway, it is proposed to provide three new intersections off Oliver Avenue to enable vehicle accessto the site.

The intemal street hierarchy will be established based on Lismore's DCP 2012 for Local Streets, Access Places and Lanes (where relevant). This will be detemmined as part of the future Development Control Plan for the site.

It is proposed to provide pedestrian and bicycle links along the length of Oliver Avenue from the Bruxner Highway in the north and to Holland Street/TaylorRoad to the south. This will enable the proposed rezoned land to have pedestrian and bicycle links to an any existing or future pedestrian and bicycle paths in Bruxner Highway and Oliver Avenue to the south west of Holland Street/Taylor Road.

Parking provision rates will be confimed as part of the development of the DCP and will be applied for each individual development on the lotsonce they are created. They will generally be expected to follow Lismore DCP 2012 guidelines.

The traffic impact of the proposed rezoning on the surrounding road network was assessed for various growth scenarios using SIDRA Intersection modelling software at the following intersections:

- Bruxner Highway / Oliver Avenue;
- Oliver Avenue / Holla nd Street;
- Three new proposed intersections

The proposed rezoning isexpected to generate an additional 914 trips and 939 tripsduring the AM and PM peak, respectively. SIDRA intersection analysis indic a tes all the a nalysed intersections generally operate at high levels of service with acceptable average delays during the existing and 10 -year growth scenarios with the additional development traffic. No modifications or improvements are required to the existing configurations of the intersections of Oliver Avenue with Bruxner Highway a nd Holla nd Street.

The intersection analysis of the proposed access roads with Oliver Avenue also suggests one traffic la ne in each direction is sufficient to cater for the development traffic in Oliver Avenue. These intersections can operate at an acceptable level of service asa priority controlled (sign controlled) intersections both in post development and 10-year growth scenario.

The Traffic and Transport Study concludes that the subject site is suitable for the proposed rezoning in relation to the impact of traffic. The proposed re-zoning is considered to have negligible effect on the operating outcome of the surrounding transport network.

## 8 References

Australian Sta ndards, 'AS/NZS 2890.1:2004 Off-Street Car Parking'.
Australian Standards, 'AS 2890.2:2018 Off-Street Commercial Vehicle Fa cilities'.
Australian Standards, 'AS/NZS 2890.6:2002 Off-Street Parking for People with Disa bilities'.
Roads and Maritime Services, 'Guide to Traffic Generating Developments' Version 2.2 dated October 2002.

NSW Department of Planning, ‘SEPP (Infrastructure) 2007’.
Lismore Development Control Plan (2012) and Land Environment Plan (2012).

## Appendix A - Concept Plan



## Appendix B - Traffic Network Diagrams

## SITE LAYOUT

© Site: 101 [Bruxner Hwy/Oliver Drive_Existing Redistributed_AM (Site Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Created: Friday, September 23, 2022 7:14:43 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## SITE LAYOUT

$\nabla$ Site: 103 [Residentail Accees 1_AM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.


## SITE LAYOUT

$\nabla$ Site: 104 [Residentail/Local Centre Accees 2_AM (Site
Folder: Bruxner Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.


## SITE LAYOUT

$\nabla$ Site: 105 [Industrial Access_AM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Created: Friday, September 23, 2022 7:15:02 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## SITE LAYOUT

## (10) Site: 102 [Oliver Drive/Holland St_Existing Redistributed_AM

 (Site Folder: Bruxner Highway Rezoning)]Stop Control
Site Category: Existing Design
Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

## iN



## Appendix C - SCATS Data

## Appendix D - SIDRA Output Summaries

## MOVEMENT SUMMARY

© Site: 101 [Bruxner Hwy/Oliver Drive_Existing
Redistributed_AM (Site Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | INPUT VOLUMES |  | DEMAND FLOWS |  | Deg. Satn <br> v/c | Aver. Delay sec | Level of Service | 95\% BACK OF QUEUE |  | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed km/h |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 58 | 2.0 | 61 | 2.0 | 0.124 | 9.4 | LOS A | 0.5 | 3.5 | 0.68 | 0.83 | 0.68 | 33.7 |
| 2 T1 | 3 | 2.0 | 3 | 2.0 | 0.334 | 7.8 | LOSA | 1.7 | 12.0 | 0.73 | 0.91 | 0.75 | 31.7 |
| 3 R2 | 249 | 2.0 | 262 | 2.0 | 0.334 | 12.5 | LOS B | 1.7 | 12.0 | 0.73 | 0.91 | 0.75 | 30.5 |
| Approach | 310 | 2.0 | 326 | 2.0 | 0.334 | 11.9 | LOS B | 1.7 | 12.0 | 0.72 | 0.90 | 0.74 | 31.0 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 230 | 2.0 | 242 | 2.0 | 0.506 | 4.7 | LOS A | 4.5 | 31.9 | 0.39 | 0.46 | 0.39 | 38.8 |
| 5 T1 | 1112 | 2.0 | 1171 | 2.0 | 0.506 | 4.8 | LOSA | 4.5 | 31.9 | 0.40 | 0.47 | 0.40 | 38.6 |
| 6 R2 | 47 | 2.0 | 49 | 2.0 | 0.506 | 9.5 | LOSA | 4.4 | 31.4 | 0.41 | 0.47 | 0.41 | 36.3 |
| Approach | 1389 | 2.0 | 1462 | 2.0 | 0.506 | 4.9 | LOSA | 4.5 | 31.9 | 0.40 | 0.47 | 0.40 | 38.5 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 27 | 2.0 | 28 | 2.0 | 0.055 | 8.6 | LOS A | 0.2 | 1.7 | 0.69 | 0.80 | 0.69 | 34.9 |
| 8 T1 | 1 | 2.0 | 1 | 2.0 | 0.096 | 7.3 | LOS A | 0.5 | 3.3 | 0.70 | 0.84 | 0.70 | 32.3 |
| 9 R2 | 67 | 2.0 | 71 | 2.0 | 0.096 | 11.9 | LOS B | 0.5 | 3.3 | 0.70 | 0.84 | 0.70 | 31.1 |
| Approach | 95 | 2.0 | 100 | 2.0 | 0.096 | 10.9 | LOS B | 0.5 | 3.3 | 0.70 | 0.83 | 0.70 | 32.0 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 102 | 2.0 | 107 | 2.0 | 0.480 | 5.9 | LOS A | 3.8 | 27.4 | 0.64 | 0.60 | 0.64 | 36.3 |
| 11 T1 | 918 | 2.0 | 966 | 2.0 | 0.480 | 6.1 | LOSA | 3.8 | 27.4 | 0.65 | 0.62 | 0.65 | 36.2 |
| 12 R 2 | 25 | 2.0 | 26 | 2.0 | 0.480 | 10.9 | LOS B | 3.7 | 26.2 | 0.66 | 0.63 | 0.66 | 34.2 |
| Approach | 1045 | 2.0 | 1100 | 2.0 | 0.480 | 6.2 | LOSA | 3.8 | 27.4 | 0.65 | 0.61 | 0.65 | 36.2 |
| All <br> Vehicles | 2839 | 2.0 | 2988 | 2.0 | 0.506 | 6.4 | LOS A | 4.5 | 31.9 | 0.54 | 0.58 | 0.54 | 36.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:46 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner Highway\Bruxner Highway Rezoning
Proposal.sip9

## MOVEMENT SUMMARY

B Site: 101 [Bruxner Hwy/Oliver Drive_Existing
Redistributed_PM (Site Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | INPUT VOLUMES |  | DEMAND FLOWS |  | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% BACK OF QUEUE <br> [ Veh. Dist] veh m |  | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver Speed <br> km/h |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 20 | 2.0 | 21 | 2.0 | 0.046 | 9.4 | LOS A | 0.2 | 1.3 | 0.69 | 0.80 | 0.69 | 33.7 |
| 2 T1 | 1 | 2.0 | 1 | 2.0 | 0.376 | 8.4 | LOSA | 2.1 | 15.0 | 0.78 | 0.95 | 0.84 | 31.1 |
| 3 R2 | 265 | 2.0 | 279 | 2.0 | 0.376 | 13.0 | LOS B | 2.1 | 15.0 | 0.78 | 0.95 | 0.84 | 29.9 |
| Approach | 286 | 2.0 | 301 | 2.0 | 0.376 | 12.8 | LOS B | 2.1 | 15.0 | 0.77 | 0.94 | 0.83 | 30.1 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 289 | 2.0 | 304 | 2.0 | 0.547 | 5.1 | LOS A | 5.0 | 35.5 | 0.51 | 0.52 | 0.51 | 37.6 |
| $5 \quad \mathrm{~T} 1$ | 1103 | 2.0 | 1161 | 2.0 | 0.547 | 5.3 | LOS A | 5.0 | 35.5 | 0.53 | 0.52 | 0.53 | 37.5 |
| 6 R2 | 13 | 2.0 | 14 | 2.0 | 0.547 | 10.0 | LOS A | 4.9 | 34.6 | 0.54 | 0.53 | 0.54 | 35.4 |
| Approach | 1405 | 2.0 | 1479 | 2.0 | 0.547 | 5.3 | LOS A | 5.0 | 35.5 | 0.53 | 0.52 | 0.53 | 37.5 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 46 | 2.0 | 48 | 2.0 | 0.097 | 8.9 | LOSA | 0.4 | 3.0 | 0.72 | 0.85 | 0.72 | 34.4 |
| 8 T1 | 2 | 2.0 | 2 | 2.0 | 0.168 | 7.6 | LOS A | 0.8 | 6.0 | 0.74 | 0.90 | 0.74 | 32.0 |
| 9 R2 | 112 | 2.0 | 118 | 2.0 | 0.168 | 12.3 | LOS B | 0.8 | 6.0 | 0.74 | 0.90 | 0.74 | 30.7 |
| Approach | 160 | 2.0 | 168 | 2.0 | 0.168 | 11.2 | LOS B | 0.8 | 6.0 | 0.73 | 0.89 | 0.73 | 31.6 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 31 | 2.0 | 33 | 2.0 | 0.483 | 5.8 | LOSA | 4.0 | 28.5 | 0.64 | 0.58 | 0.64 | 36.2 |
| 11 T1 | 999 | 2.0 | 1052 | 2.0 | 0.483 | 6.0 | LOS A | 4.0 | 28.5 | 0.65 | 0.60 | 0.65 | 36.2 |
| 12 R 2 | 34 | 2.0 | 36 | 2.0 | 0.483 | 10.8 | LOS B | 3.8 | 27.2 | 0.66 | 0.62 | 0.66 | 34.2 |
| Approach | 1064 | 2.0 | 1120 | 2.0 | 0.483 | 6.1 | LOS A | 4.0 | 28.5 | 0.65 | 0.60 | 0.65 | 36.1 |
| All <br> Vehicles | 2915 | 2.0 | 3068 | 2.0 | 0.547 | 6.7 | LOS A | 5.0 | 35.5 | 0.61 | 0.61 | 0.61 | 35.7 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:47 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner Highway\Bruxner Highway Rezoning
Proposal.sip9

## MOVEMENT SUMMARY

(10) Site: 102 [Oliver Drive/Holland St_Existing Redistributed_AM
(Site Folder: Bruxner Highway Rezoning)]

Stop Control<br>Site Category: Existing Design<br>Stop (Two-Way)

| Mov TurnID | INPUT VOLUMES |  | DEMAND FLOWS |  | Deg. Satn v/c | Aver. Delay | Level of Service | 95\% BACK OF QUEUE |  | Prop. Que | Effective Stop Rate | $\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$ | Aver. Speed <br> km/h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [ Total veh/h | $\begin{gathered} \text { HV ] } \\ \% \end{gathered}$ | [ Total veh/h | $\begin{gathered} \mathrm{HV}] \\ \% \end{gathered}$ |  |  |  | [ Veh. veh | $\begin{gathered} \text { Dist ] } \\ \mathrm{m} \end{gathered}$ |  |  |  |  |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 66 | 2.0 | 69 | 2.0 | 0.089 | 5.6 | LOS A | 0.4 | 2.8 | 0.08 | 0.53 | 0.08 | 53.5 |
| 2 T1 | 7 | 2.0 | 7 | 2.0 | 0.089 | 0.1 | LOS A | 0.4 | 2.8 | 0.08 | 0.53 | 0.08 | 55.0 |
| $3 \quad \mathrm{R} 2$ | 79 | 2.0 | 83 | 2.0 | 0.089 | 5.5 | LOS A | 0.4 | 2.8 | 0.08 | 0.53 | 0.08 | 53.0 |
| Approach | 152 | 2.0 | 160 | 2.0 | 0.089 | 5.3 | NA | 0.4 | 2.8 | 0.08 | 0.53 | 0.08 | 53.3 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 64 | 2.0 | 67 | 2.0 | 0.262 | 8.1 | LOS A | 1.2 | 8.2 | 0.06 | 1.05 | 0.06 | 51.2 |
| $5 \quad \mathrm{~T} 1$ | 188 | 2.0 | 198 | 2.0 | 0.262 | 9.0 | LOS A | 1.2 | 8.2 | 0.06 | 1.05 | 0.06 | 50.9 |
| 6 R2 | 6 | 2.0 | 6 | 2.0 | 0.262 | 10.7 | LOS B | 1.2 | 8.2 | 0.06 | 1.05 | 0.06 | 50.7 |
| Approach | 258 | 2.0 | 272 | 2.0 | 0.262 | 8.8 | LOS A | 1.2 | 8.2 | 0.06 | 1.05 | 0.06 | 51.0 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 16 | 2.0 | 17 | 2.0 | 0.024 | 5.7 | LOSA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 53.8 |
| 8 T1 | 6 | 2.0 | 6 | 2.0 | 0.024 | 0.2 | LOSA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 55.2 |
| 9 R2 | 18 | 2.0 | 19 | 2.0 | 0.024 | 5.7 | LOS A | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 53.2 |
| Approach | 40 | 2.0 | 42 | 2.0 | 0.024 | 4.9 | NA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 53.7 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 17 | 2.0 | 18 | 2.0 | 0.378 | 8.3 | LOS A | 1.9 | 13.5 | 0.19 | 1.01 | 0.20 | 50.6 |
| 11 T1 | 201 | 2.0 | 212 | 2.0 | 0.378 | 9.1 | LOS A | 1.9 | 13.5 | 0.19 | 1.01 | 0.20 | 50.4 |
| 12 R 2 | 90 | 2.0 | 95 | 2.0 | 0.378 | 12.0 | LOS B | 1.9 | 13.5 | 0.19 | 1.01 | 0.20 | 50.2 |
| Approach | 308 | 2.0 | 324 | 2.0 | 0.378 | 9.9 | LOS A | 1.9 | 13.5 | 0.19 | 1.01 | 0.20 | 50.3 |
| All <br> Vehicles | 758 | 2.0 | 798 | 2.0 | 0.378 | 8.4 | NA | 1.9 | 13.5 | 0.12 | 0.90 | 0.12 | 51.3 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^0]
## MOVEMENT SUMMARY

(9i0) Site: 102 [Oliver Drive/Holland St_Existing Redistributed_PM
(Site Folder: Bruxner Highway Rezoning)]

Stop Control<br>Site Category: Existing Design<br>Stop (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{gathered} \text { HD } \\ \text { NS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$ | Deg. <br> Satn <br> v/c | Aver. Delay <br> sec | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed <br> km/h |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 39 | 2.0 | 41 | 2.0 | 0.049 | 5.6 | LOS A | 0.2 | 1.4 | 0.05 | 0.54 | 0.05 | 53.6 |
| 2 T1 | 4 | 2.0 | 4 | 2.0 | 0.049 | 0.0 | LOSA | 0.2 | 1.4 | 0.05 | 0.54 | 0.05 | 55.1 |
| 3 R2 | 41 | 2.0 | 43 | 2.0 | 0.049 | 5.5 | LOSA | 0.2 | 1.4 | 0.05 | 0.54 | 0.05 | 53.1 |
| Approach | 84 | 2.0 | 88 | 2.0 | 0.049 | 5.3 | NA | 0.2 | 1.4 | 0.05 | 0.54 | 0.05 | 53.4 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 55 | 2.0 | 58 | 2.0 | 0.336 | 8.1 | LOS A | 1.6 | 11.5 | 0.06 | 1.05 | 0.06 | 51.4 |
| 5 T1 | 271 | 2.0 | 285 | 2.0 | 0.336 | 8.6 | LOSA | 1.6 | 11.5 | 0.06 | 1.05 | 0.06 | 51.1 |
| 6 R2 | 14 | 2.0 | 15 | 2.0 | 0.336 | 11.4 | LOS B | 1.6 | 11.5 | 0.06 | 1.05 | 0.06 | 50.9 |
| Approach | 340 | 2.0 | 358 | 2.0 | 0.336 | 8.6 | LOSA | 1.6 | 11.5 | 0.06 | 1.05 | 0.06 | 51.1 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 6 | 2.0 | 6 | 2.0 | 0.021 | 5.7 | LOS A | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 53.7 |
| 8 T1 | 4 | 2.0 | 4 | 2.0 | 0.021 | 0.1 | LOSA | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 55.2 |
| 9 R2 | 25 | 2.0 | 26 | 2.0 | 0.021 | 5.6 | LOSA | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 53.2 |
| Approach | 35 | 2.0 | 37 | 2.0 | 0.021 | 5.0 | NA | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 53.5 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 25 | 2.0 | 26 | 2.0 | 0.356 | 8.1 | LOSA | 1.7 | 11.9 | 0.10 | 1.03 | 0.10 | 51.1 |
| 11 T1 | 252 | 2.0 | 265 | 2.0 | 0.356 | 8.5 | LOSA | 1.7 | 11.9 | 0.10 | 1.03 | 0.10 | 50.9 |
| 12 R 2 | 50 | 2.0 | 53 | 2.0 | 0.356 | 12.4 | LOS B | 1.7 | 11.9 | 0.10 | 1.03 | 0.10 | 50.6 |
| Approach | 327 | 2.0 | 344 | 2.0 | 0.356 | 9.0 | LOSA | 1.7 | 11.9 | 0.10 | 1.03 | 0.10 | 50.9 |
| All Vehicles | 786 | 2.0 | 827 | 2.0 | 0.356 | 8.3 | NA | 1.7 | 11.9 | 0.08 | 0.96 | 0.08 | 51.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^1]
## MOVEMENT SUMMARY

B Site: 101 [Bruxner Hwy/Oliver Drive_Cumulative_AM (Site Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { INP } \\ & \text { VOLU } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay sec $\qquad$ | Level of Service | $\begin{gathered} 95 \% \text { B } \\ \text { QU } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 292 | 2.0 | 307 | 2.0 | 0.635 | 13.0 | LOS B | 4.3 | 31.0 | 0.90 | 1.05 | 1.20 | 29.2 |
| 2 T1 | 3 | 2.0 | 3 | 2.0 | 0.515 | 9.8 | LOS A | 3.5 | 24.8 | 0.89 | 1.02 | 1.05 | 29.7 |
| $3 \quad \mathrm{R} 2$ | 297 | 2.0 | 313 | 2.0 | 0.515 | 14.4 | LOS B | 3.5 | 24.8 | 0.89 | 1.02 | 1.05 | 28.6 |
| Approach | 592 | 2.0 | 623 | 2.0 | 0.635 | 13.7 | LOS B | 4.3 | 31.0 | 0.90 | 1.03 | 1.12 | 28.9 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 310 | 2.0 | 326 | 2.0 | 0.744 | 10.1 | LOS B | 10.4 | 73.9 | 0.91 | 0.91 | 1.14 | 32.7 |
| 5 T1 | 1112 | 2.0 | 1171 | 2.0 | 0.744 | 10.9 | LOS B | 10.4 | 73.9 | 0.92 | 0.95 | 1.18 | 31.9 |
| 6 R2 | 48 | 2.0 | 51 | 2.0 | 0.744 | 16.1 | LOS B | 10.0 | 71.2 | 0.93 | 0.98 | 1.21 | 29.9 |
| Approach | 1470 | 2.0 | 1547 | 2.0 | 0.744 | 10.9 | LOS B | 10.4 | 73.9 | 0.92 | 0.94 | 1.18 | 32.0 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 34 | 2.0 | 36 | 2.0 | 0.091 | 10.2 | LOS B | 0.4 | 3.0 | 0.78 | 0.89 | 0.78 | 32.5 |
| 8 T1 | 1 | 2.0 | 1 | 2.0 | 0.172 | 8.6 | LOS A | 0.9 | 6.6 | 0.82 | 0.94 | 0.82 | 30.9 |
| 9 R2 | 93 | 2.0 | 98 | 2.0 | 0.172 | 13.3 | LOS B | 0.9 | 6.6 | 0.82 | 0.94 | 0.82 | 29.7 |
| Approach | 128 | 2.0 | 135 | 2.0 | 0.172 | 12.4 | LOS B | 0.9 | 6.6 | 0.81 | 0.92 | 0.81 | 30.3 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 108 | 2.0 | 114 | 2.0 | 0.649 | 7.6 | LOS A | 7.2 | 51.0 | 0.82 | 0.77 | 0.90 | 34.8 |
| 11 T1 | 918 | 2.0 | 966 | 2.0 | 0.649 | 7.9 | LOS A | 7.2 | 51.0 | 0.82 | 0.79 | 0.92 | 34.0 |
| 12 R 2 | 307 | 2.0 | 323 | 2.0 | 0.649 | 13.2 | LOS B | 7.0 | 50.0 | 0.83 | 0.84 | 0.95 | 31.1 |
| Approach | 1333 | 2.0 | 1403 | 2.0 | 0.649 | 9.1 | LOS A | 7.2 | 51.0 | 0.83 | 0.80 | 0.92 | 33.3 |
| All <br> Vehicles | 3523 | 2.0 | 3708 | 2.0 | 0.744 | 10.8 | LOS B | 10.4 | 73.9 | 0.88 | 0.90 | 1.06 | 31.8 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:48 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner Highway\Bruxner Highway Rezoning
Proposal.sip9

## MOVEMENT SUMMARY

- Site: 101 [Bruxner Hwy/Oliver Drive_Cumulative_PM (Site

Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { JT } \\ \text { MES } \\ \text { HV ] } \\ \% \end{gathered}$ |  | $\begin{gathered} \text { HD } \\ \text { NS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$ | Deg. <br> Satn <br> v/c | Aver. Delay <br> sec | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed <br> $\mathrm{km} / \mathrm{h}$ |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 305 | 2.0 | 321 | 2.0 | 0.665 | 14.0 | LOS B | 4.8 | 33.9 | 0.91 | 1.07 | 1.26 | 28.1 |
| 2 T1 | 1 | 2.0 | 1 | 2.0 | 0.594 | 10.9 | LOS B | 4.4 | 31.2 | 0.91 | 1.05 | 1.15 | 28.7 |
| 3 R2 | 346 | 2.0 | 364 | 2.0 | 0.594 | 15.6 | LOS B | 4.4 | 31.2 | 0.91 | 1.05 | 1.15 | 27.6 |
| Approach | 652 | 2.0 | 686 | 2.0 | 0.665 | 14.8 | LOS B | 4.8 | 33.9 | 0.91 | 1.06 | 1.20 | 27.8 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 349 | 2.0 | 367 | 2.0 | 0.743 | 10.1 | LOS B | 10.3 | 73.4 | 0.91 | 0.91 | 1.14 | 32.6 |
| 5 T1 | 1103 | 2.0 | 1161 | 2.0 | 0.743 | 10.9 | LOS B | 10.3 | 73.4 | 0.92 | 0.95 | 1.18 | 32.0 |
| 6 R2 | 20 | 2.0 | 21 | 2.0 | 0.743 | 16.1 | LOS B | 9.9 | 70.8 | 0.93 | 0.97 | 1.21 | 30.1 |
| Approach | 1472 | 2.0 | 1549 | 2.0 | 0.743 | 10.8 | LOS B | 10.3 | 73.4 | 0.92 | 0.94 | 1.17 | 32.1 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 47 | 2.0 | 49 | 2.0 | 0.133 | 10.8 | LOS B | 0.6 | 4.5 | 0.81 | 0.90 | 0.81 | 31.7 |
| 8 T1 | 2 | 2.0 | 2 | 2.0 | 0.238 | 9.2 | LOSA | 1.3 | 9.5 | 0.85 | 0.95 | 0.85 | 30.3 |
| 9 R2 | 119 | 2.0 | 125 | 2.0 | 0.238 | 13.9 | LOS B | 1.3 | 9.5 | 0.85 | 0.95 | 0.85 | 29.2 |
| Approach | 168 | 2.0 | 177 | 2.0 | 0.238 | 13.0 | LOS B | 1.3 | 9.5 | 0.84 | 0.94 | 0.84 | 29.8 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 59 | 2.0 | 62 | 2.0 | 0.671 | 8.2 | LOSA | 7.9 | 56.5 | 0.86 | 0.81 | 0.97 | 34.3 |
| 11 T1 | 999 | 2.0 | 1052 | 2.0 | 0.671 | 8.5 | LOSA | 7.9 | 56.5 | 0.87 | 0.83 | 0.99 | 33.6 |
| 12 R 2 | 280 | 2.0 | 295 | 2.0 | 0.671 | 13.8 | LOS B | 7.7 | 54.9 | 0.88 | 0.88 | 1.03 | 30.8 |
| Approach | 1338 | 2.0 | 1408 | 2.0 | 0.671 | 9.6 | LOS A | 7.9 | 56.5 | 0.87 | 0.84 | 1.00 | 33.0 |
| All <br> Vehicles | 3630 | 2.0 | 3821 | 2.0 | 0.743 | 11.2 | LOS B | 10.3 | 73.4 | 0.89 | 0.92 | 1.10 | 31.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:48 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner HighwaylBruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

Site: 102 [Oliver Drive/Holland St_Cumulative_AM (Site Folder: Bruxner Highway Rezoning)]
Stop Control
Site Category: Existing Design
Stop (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \\ & \hline \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service |  | CK OF UE Dist] m | Prop. Que | Effective Stop Rate |  | Aver. Speed <br> km/h |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| L2 | 66 | 2.0 | 69 | 2.0 | 0.114 | 5.6 | LOS A | 0.5 | 3.9 | 0.09 | 0.53 | 0.09 | 53.5 |
| 2 T1 | 7 | 2.0 | 7 | 2.0 | 0.114 | 0.1 | LOSA | 0.5 | 3.9 | 0.09 | 0.53 | 0.09 | 54.9 |
| 3 R 2 | 119 | 2.0 | 125 | 2.0 | 0.114 | 5.5 | LOSA | 0.5 | 3.9 | 0.09 | 0.53 | 0.09 | 52.9 |
| Approach | 192 | 2.0 | 202 | 2.0 | 0.114 | 5.4 | NA | 0.5 | 3.9 | 0.09 | 0.53 | 0.09 | 53.2 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 87 | 2.0 | 92 | 2.0 | 0.358 | 8.1 | LOS A | 1.7 | 12.2 | 0.06 | 1.05 | 0.06 | 50.9 |
| 5 T1 | 247 | 2.0 | 260 | 2.0 | 0.358 | 9.5 | LOSA | 1.7 | 12.2 | 0.06 | 1.05 | 0.06 | 50.7 |
| 6 R2 | 6 | 2.0 | 6 | 2.0 | 0.358 | 13.0 | LOS B | 1.7 | 12.2 | 0.06 | 1.05 | 0.06 | 50.4 |
| Approach | 340 | 2.0 | 358 | 2.0 | 0.358 | 9.2 | LOSA | 1.7 | 12.2 | 0.06 | 1.05 | 0.06 | 50.7 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 16 | 2.0 | 17 | 2.0 | 0.024 | 5.7 | LOSA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 53.8 |
| 8 T1 | 6 | 2.0 | 6 | 2.0 | 0.024 | 0.2 | LOSA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 55.2 |
| 9 R2 | 18 | 2.0 | 19 | 2.0 | 0.024 | 5.7 | LOSA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 53.2 |
| Approach | 40 | 2.0 | 42 | 2.0 | 0.024 | 4.9 | NA | 0.1 | 0.7 | 0.15 | 0.45 | 0.15 | 53.7 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 17 | 2.0 | 18 | 2.0 | 0.519 | 9.3 | LOS A | 3.8 | 27.3 | 0.25 | 1.04 | 0.35 | 49.4 |
| 11 T1 | 291 | 2.0 | 306 | 2.0 | 0.519 | 10.7 | LOS B | 3.8 | 27.3 | 0.25 | 1.04 | 0.35 | 49.2 |
| 12 R 2 | 90 | 2.0 | 95 | 2.0 | 0.519 | 15.9 | LOS C | 3.8 | 27.3 | 0.25 | 1.04 | 0.35 | 49.0 |
| Approach | 398 | 2.0 | 419 | 2.0 | 0.519 | 11.8 | LOS B | 3.8 | 27.3 | 0.25 | 1.04 | 0.35 | 49.2 |
| All <br> Vehicles | 970 | 2.0 | 1021 | 2.0 | 0.519 | 9.3 | NA | 3.8 | 27.3 | 0.15 | 0.92 | 0.19 | 50.6 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^2]
## MOVEMENT SUMMARY

Site: 102 [Oliver Drive/Holland St_Cumulative_PM (Site Folder: Bruxner Highway Rezoning)]
Stop Control
Site Category: Existing Design
Stop (Two-Way)

| Mov Turn | INPUT VOLUMES |  | DEMAND FLOWS |  | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% BACK OF QUEUE |  | Prop. Que | Effective Stop Rate | Aver. Aver. <br> No. Speed Cycles km/h |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [ Total veh/h | $\begin{gathered} \mathrm{HV}] \\ \% \end{gathered}$ | [ Total veh/h | $\begin{gathered} \mathrm{HV}] \\ \% \end{gathered}$ |  |  |  | [ Veh. veh | Dist $]$ m |  |  |  |  |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 39 | 2.0 | 41 | 2.0 | 0.063 | 5.6 | LOS A | 0.3 | 2.0 | 0.05 | 0.55 | 0.05 | 53.6 |
| 2 T1 | 4 | 2.0 | 4 | 2.0 | 0.063 | 0.0 | LOS A | 0.3 | 2.0 | 0.05 | 0.55 | 0.05 | 55.0 |
| 3 R2 | 65 | 2.0 | 68 | 2.0 | 0.063 | 5.5 | LOS A | 0.3 | 2.0 | 0.05 | 0.55 | 0.05 | 53.0 |
| Approach | 108 | 2.0 | 114 | 2.0 | 0.063 | 5.3 | NA | 0.3 | 2.0 | 0.05 | 0.55 | 0.05 | 53.3 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 96 | 2.0 | 101 | 2.0 | 0.471 | 8.1 | LOS A | 2.6 | 18.8 | 0.06 | 1.05 | 0.06 | 51.1 |
| 5 T1 | 362 | 2.0 | 381 | 2.0 | 0.471 | 9.0 | LOS A | 2.6 | 18.8 | 0.06 | 1.05 | 0.06 | 50.9 |
| 6 R2 | 14 | 2.0 | 15 | 2.0 | 0.471 | 13.7 | LOS B | 2.6 | 18.8 | 0.06 | 1.05 | 0.06 | 50.6 |
| Approach | 472 | 2.0 | 497 | 2.0 | 0.471 | 9.0 | LOS A | 2.6 | 18.8 | 0.06 | 1.05 | 0.06 | 50.9 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $7 \quad$ L2 | 6 | 2.0 | 6 | 2.0 | 0.021 | 5.7 | LOS A | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 53.7 |
| 8 T1 | 4 | 2.0 | 4 | 2.0 | 0.021 | 0.1 | LOSA | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 55.2 |
| 9 R2 | 25 | 2.0 | 26 | 2.0 | 0.021 | 5.6 | LOS A | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 53.2 |
| Approach | 35 | 2.0 | 37 | 2.0 | 0.021 | 5.0 | NA | 0.1 | 0.7 | 0.13 | 0.49 | 0.13 | 53.5 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 25 | 2.0 | 26 | 2.0 | 0.451 | 8.5 | LOS A | 2.7 | 19.3 | 0.13 | 1.03 | 0.14 | 50.5 |
| 11 T1 | 314 | 2.0 | 331 | 2.0 | 0.451 | 9.1 | LOS A | 2.7 | 19.3 | 0.13 | 1.03 | 0.14 | 50.2 |
| 12 R 2 | 50 | 2.0 | 53 | 2.0 | 0.451 | 16.5 | LOS C | 2.7 | 19.3 | 0.13 | 1.03 | 0.14 | 50.0 |
| Approach | 389 | 2.0 | 409 | 2.0 | 0.451 | 10.0 | LOS B | 2.7 | 19.3 | 0.13 | 1.03 | 0.14 | 50.2 |
| All <br> Vehicles | 1004 | 2.0 | 1057 | 2.0 | 0.471 | 8.8 | NA | 2.7 | 19.3 | 0.09 | 0.97 | 0.09 | 51.0 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^3]
## MOVEMENT SUMMARY

$\nabla$ Site: 103 [Residentail Accees 1_AM (Site Folder: Bruxner Highway Rezoning)]

New Site<br>Site Category: Proposed Design 1<br>Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay $\qquad$ | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate |  | Aver. Speed <br> km/h |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 437 | 0.0 | 460 | 0.0 | 0.241 | 0.1 | LOS A | 0.1 | 0.4 | 0.02 | 0.01 | 0.02 | 59.8 |
| 3 R2 | 4 | 0.0 | 4 | 0.0 | 0.241 | 9.0 | LOS A | 0.1 | 0.4 | 0.02 | 0.01 | 0.02 | 56.6 |
| Approach | 441 | 0.0 | 464 | 0.0 | 0.241 | 0.1 | NA | 0.1 | 0.4 | 0.02 | 0.01 | 0.02 | 59.8 |
| East: Residentail Access 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 19 | 0.0 | 20 | 0.0 | 0.223 | 8.5 | LOS A | 0.8 | 5.3 | 0.71 | 0.89 | 0.76 | 44.9 |
| 6 R2 | 74 | 0.0 | 78 | 0.0 | 0.223 | 13.8 | LOS B | 0.8 | 5.3 | 0.71 | 0.89 | 0.76 | 37.2 |
| Approach | 93 | 0.0 | 98 | 0.0 | 0.223 | 12.7 | LOS B | 0.8 | 5.3 | 0.71 | 0.89 | 0.76 | 39.3 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 20 | 0.0 | 21 | 0.0 | 0.315 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 55.6 |
| 8 T1 | 562 | 0.0 | 592 | 0.0 | 0.315 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 59.6 |
| Approach | 582 | 0.0 | 613 | 0.0 | 0.315 | 0.2 | NA | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 59.5 |
| All <br> Vehicles | 1116 | 0.0 | 1175 | 0.0 | 0.315 | 1.2 | NA | 0.8 | 5.3 | 0.07 | 0.09 | 0.07 | 57.9 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## MOVEMENT SUMMARY

$\nabla$ Site: 103 [Residentail Accees 1_PM (Site Folder: Bruxner Highway Rezoning)]

New Site<br>Site Category: Proposed Design 1<br>Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \\ & \hline \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service |  | CK OF UE Dist] m | Prop. Que | Effective Stop Rate |  | Aver. Speed <br> km/h |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 604 | 0.0 | 636 | 0.0 | 0.350 | 0.3 | LOS A | 0.4 | 3.0 | 0.07 | 0.02 | 0.09 | 59.2 |
| 3 R2 | 21 | 0.0 | 22 | 0.0 | 0.350 | 9.5 | LOS A | 0.4 | 3.0 | 0.07 | 0.02 | 0.09 | 56.1 |
| Approach | 625 | 0.0 | 658 | 0.0 | 0.350 | 0.6 | NA | 0.4 | 3.0 | 0.07 | 0.02 | 0.09 | 59.1 |
| East: Residential Access 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 5 | 0.0 | 5 | 0.0 | 0.076 | 7.5 | LOSA | 0.2 | 1.6 | 0.72 | 0.86 | 0.72 | 44.0 |
| 6 R2 | 21 | 0.0 | 22 | 0.0 | 0.076 | 15.3 | LOS C | 0.2 | 1.6 | 0.72 | 0.86 | 0.72 | 36.3 |
| Approach | 26 | 0.0 | 27 | 0.0 | 0.076 | 13.8 | LOS B | 0.2 | 1.6 | 0.72 | 0.86 | 0.72 | 38.2 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 86 | 0.0 | 91 | 0.0 | 0.311 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 54.3 |
| 8 T1 | 485 | 0.0 | 511 | 0.0 | 0.311 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.7 |
| Approach | 571 | 0.0 | 601 | 0.0 | 0.311 | 0.9 | NA | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.2 |
| All Vehicles | 1222 | 0.0 | 1286 | 0.0 | 0.350 | 1.0 | NA | 0.4 | 3.0 | 0.05 | 0.07 | 0.06 | 58.2 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## MOVEMENT SUMMARY

$\nabla$ Site: 104 [Residentail/Local Centre Accees 2_AM (Site
Folder: Bruxner Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{gathered} \text { JT } \\ \text { VES } \\ \text { HV ] } \\ \% \\ \hline \end{gathered}$ | $\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \text { E } \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed <br> $\mathrm{km} / \mathrm{h}$ |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 296 | 0.0 | 312 | 0.0 | 0.185 | 0.4 | LOS A | 0.3 | 2.2 | 0.12 | 0.05 | 0.12 | 58.9 |
| 3 R2 | 22 | 0.0 | 23 | 0.0 | 0.185 | 8.7 | LOSA | 0.3 | 2.2 | 0.12 | 0.05 | 0.12 | 55.6 |
| Approach | 318 | 0.0 | 335 | 0.0 | 0.185 | 1.0 | NA | 0.3 | 2.2 | 0.12 | 0.05 | 0.12 | 58.7 |
| East: Resi/Local Cntr Access 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 37 | 0.0 | 39 | 0.0 | 0.353 | 8.8 | LOS A | 1.4 | 10.1 | 0.68 | 0.92 | 0.86 | 45.5 |
| 6 R2 | 145 | 0.0 | 153 | 0.0 | 0.353 | 12.7 | LOS B | 1.4 | 10.1 | 0.68 | 0.92 | 0.86 | 43.2 |
| Approach | 182 | 0.0 | 192 | 0.0 | 0.353 | 11.9 | LOS B | 1.4 | 10.1 | 0.68 | 0.92 | 0.86 | 43.7 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 90 | 0.0 | 95 | 0.0 | 0.316 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 56.0 |
| 8 T1 | 491 | 0.0 | 517 | 0.0 | 0.316 | 0.1 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.9 |
| Approach | 581 | 0.0 | 612 | 0.0 | 0.316 | 0.9 | NA | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.6 |
| All <br> Vehicles | 1081 | 0.0 | 1138 | 0.0 | 0.353 | 2.8 | NA | 1.4 | 10.1 | 0.15 | 0.22 | 0.18 | 56.2 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## MOVEMENT SUMMARY

## $\nabla$ Site: 104 [Residentail/Local Centre Accees 2_PM (Site Folder:

Bruxner Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { INP } \\ & \text { VOLU } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service | $\begin{aligned} & 95 \% \text { B } \\ & \text { QU } \\ & \text { [ Veh. } \\ & \text { veh } \end{aligned}$ | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | Aver No. Cycles | Aver. Speed <br> km/h |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 532 | 0.0 | 560 | 0.0 | 0.327 | 0.4 | LOS A | 0.6 | 4.4 | 0.12 | 0.04 | 0.13 | 59.0 |
| 3 R2 | 39 | 0.0 | 41 | 0.0 | 0.327 | 8.5 | LOSA | 0.6 | 4.4 | 0.12 | 0.04 | 0.13 | 55.6 |
| Approach | 571 | 0.0 | 601 | 0.0 | 0.327 | 1.0 | NA | 0.6 | 4.4 | 0.12 | 0.04 | 0.13 | 58.8 |
| East: Resi/Local Cntr Access 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 23 | 0.0 | 24 | 0.0 | 0.262 | 7.3 | LOSA | 0.9 | 6.5 | 0.66 | 0.86 | 0.75 | 45.0 |
| 6 R2 | 93 | 0.0 | 98 | 0.0 | 0.262 | 13.7 | LOS B | 0.9 | 6.5 | 0.66 | 0.86 | 0.75 | 42.7 |
| Approach | 116 | 0.0 | 122 | 0.0 | 0.262 | 12.5 | LOS B | 0.9 | 6.5 | 0.66 | 0.86 | 0.75 | 43.2 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 157 | 0.0 | 165 | 0.0 | 0.269 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 54.7 |
| 8 T1 | 333 | 0.0 | 351 | 0.0 | 0.269 | 0.1 | LOS A | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 58.0 |
| Approach | 490 | 0.0 | 516 | 0.0 | 0.269 | 1.8 | NA | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 57.2 |
| All <br> Vehicles | 1177 | 0.0 | 1239 | 0.0 | 0.327 | 2.5 | NA | 0.9 | 6.5 | 0.12 | 0.19 | 0.14 | 56.6 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## MOVEMENT SUMMARY

$\nabla$ Site: 105 [Industrial Access_AM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INP } \\ & \text { VOLu } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \\ & \hline \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | $\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$ | Aver. Speed <br> km/h |
| South: Industrial Access |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 26 | 0.0 | 27 | 0.0 | 0.138 | 6.5 | LOSA | 0.5 | 3.3 | 0.49 | 0.75 | 0.49 | 51.0 |
| 3 R 2 | 63 | 0.0 | 66 | 0.0 | 0.138 | 10.0 | LOS B | 0.5 | 3.3 | 0.49 | 0.75 | 0.49 | 50.5 |
| Approach | 89 | 0.0 | 94 | 0.0 | 0.138 | 9.0 | LOSA | 0.5 | 3.3 | 0.49 | 0.75 | 0.49 | 50.7 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 252 | 0.0 | 265 | 0.0 | 0.292 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.28 | 0.00 | 55.9 |
| 5 T1 | 276 | 0.0 | 291 | 0.0 | 0.292 | 0.1 | LOSA | 0.0 | 0.0 | 0.00 | 0.28 | 0.00 | 57.3 |
| Approach | 528 | 0.0 | 556 | 0.0 | 0.292 | 2.7 | NA | 0.0 | 0.0 | 0.00 | 0.28 | 0.00 | 56.6 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 255 | 0.0 | 268 | 0.0 | 0.248 | 1.5 | LOSA | 1.2 | 8.3 | 0.40 | 0.21 | 0.40 | 56.7 |
| 12 R 2 | 104 | 0.0 | 109 | 0.0 | 0.248 | 8.4 | LOSA | 1.2 | 8.3 | 0.40 | 0.21 | 0.40 | 54.7 |
| Approach | 359 | 0.0 | 378 | 0.0 | 0.248 | 3.5 | NA | 1.2 | 8.3 | 0.40 | 0.21 | 0.40 | 56.1 |
| All <br> Vehicles | 976 | 0.0 | 1027 | 0.0 | 0.292 | 3.6 | NA | 1.2 | 8.3 | 0.19 | 0.30 | 0.19 | 55.8 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## MOVEMENT SUMMARY

$\nabla$ Site: 105 [Industrial Access_PM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INP } \\ & \text { VOLu } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \\ & \hline \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate | $\begin{aligned} & \text { Aver. } \\ & \text { No. } \\ & \text { Cycles } \end{aligned}$ | Aver. Speed <br> km/h |
| South: Industrial Access |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 104 | 0.0 | 109 | 0.0 | 0.502 | 8.2 | LOSA | 2.9 | 20.4 | 0.59 | 0.90 | 0.88 | 49.9 |
| 3 R2 | 252 | 0.0 | 265 | 0.0 | 0.502 | 11.6 | LOS B | 2.9 | 20.4 | 0.59 | 0.90 | 0.88 | 49.4 |
| Approach | 356 | 0.0 | 375 | 0.0 | 0.502 | 10.6 | LOS B | 2.9 | 20.4 | 0.59 | 0.90 | 0.88 | 49.5 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 63 | 0.0 | 66 | 0.0 | 0.194 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 57.4 |
| 5 T1 | 293 | 0.0 | 308 | 0.0 | 0.194 | 0.1 | LOSA | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 59.0 |
| Approach | 356 | 0.0 | 375 | 0.0 | 0.194 | 1.0 | NA | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 58.7 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 319 | 0.0 | 336 | 0.0 | 0.195 | 0.2 | LOSA | 0.3 | 1.9 | 0.09 | 0.05 | 0.09 | 59.2 |
| 12 R2 | 26 | 0.0 | 27 | 0.0 | 0.195 | 7.1 | LOSA | 0.3 | 1.9 | 0.09 | 0.05 | 0.09 | 57.0 |
| Approach | 345 | 0.0 | 363 | 0.0 | 0.195 | 0.7 | NA | 0.3 | 1.9 | 0.09 | 0.05 | 0.09 | 59.0 |
| All <br> Vehicles | 1057 | 0.0 | 1113 | 0.0 | 0.502 | 4.2 | NA | 2.9 | 20.4 | 0.23 | 0.35 | 0.33 | 55.3 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## MOVEMENT SUMMARY

## - Site: 101 [Bruxner Hwy/Oliver Drive_Existing Redistributed_AM (Site Folder: Bruxner Highway Rezoning)]

Roundbaout
Site Category: Existing Design
Roundabout
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | UT <br> HV ] <br> \% |  | ND VS HV] \% | Deg. Satn v/c | Aver. Delay sec | Level of Service | 95\% <br> [ Veh veh | CK OF <br> JE <br> Dist ] <br> m | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed km/h |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 58 | 2.0 | 71 | 2.0 | 0.163 | 10.3 | LOS B | 0.7 | 5.0 | 0.74 | 0.87 | 0.74 | 32.5 |
| 2 T1 | 3 | 2.0 | 4 | 2.0 | 0.451 | 9.8 | LOSA | 2.7 | 19.4 | 0.82 | 0.99 | 0.98 | 29.7 |
| 3 R2 | 249 | 2.0 | 307 | 2.0 | 0.451 | 14.4 | LOS B | 2.7 | 19.4 | 0.82 | 0.99 | 0.98 | 28.6 |
| Approach | 310 | 2.0 | 382 | 2.0 | 0.451 | 13.6 | LOS B | 2.7 | 19.4 | 0.81 | 0.97 | 0.93 | 29.2 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 230 | 2.0 | 283 | 2.0 | 0.603 | 4.9 | LOS A | 6.2 | 43.8 | 0.48 | 0.48 | 0.48 | 37.9 |
| 5 T1 | 1112 | 2.0 | 1370 | 2.0 | 0.603 | 5.1 | LOSA | 6.2 | 43.8 | 0.50 | 0.49 | 0.50 | 37.6 |
| 6 R2 | 47 | 2.0 | 58 | 2.0 | 0.603 | 9.7 | LOSA | 6.1 | 43.1 | 0.52 | 0.50 | 0.52 | 35.4 |
| Approach | 1389 | 2.0 | 1711 | 2.0 | 0.603 | 5.2 | LOSA | 6.2 | 43.8 | 0.50 | 0.49 | 0.50 | 37.6 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 27 | 2.0 | 33 | 2.0 | 0.076 | 9.5 | LOS A | 0.3 | 2.4 | 0.75 | 0.87 | 0.75 | 33.5 |
| 8 T1 | 1 | 2.0 | 1 | 2.0 | 0.133 | 8.1 | LOS A | 0.7 | 4.9 | 0.78 | 0.90 | 0.78 | 31.5 |
| 9 R2 | 67 | 2.0 | 83 | 2.0 | 0.133 | 12.7 | LOS B | 0.7 | 4.9 | 0.78 | 0.90 | 0.78 | 30.2 |
| Approach | 95 | 2.0 | 117 | 2.0 | 0.133 | 11.8 | LOS B | 0.7 | 4.9 | 0.77 | 0.89 | 0.77 | 31.0 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 102 | 2.0 | 126 | 2.0 | 0.593 | 7.0 | LOS A | 5.7 | 40.8 | 0.77 | 0.71 | 0.81 | 35.2 |
| 11 T1 | 918 | 2.0 | 1131 | 2.0 | 0.593 | 7.4 | LOS A | 5.7 | 40.8 | 0.78 | 0.74 | 0.83 | 35.1 |
| 12 R2 | 25 | 2.0 | 31 | 2.0 | 0.593 | 12.4 | LOS B | 5.7 | 40.2 | 0.79 | 0.77 | 0.86 | 33.2 |
| Approach | 1045 | 2.0 | 1287 | 2.0 | 0.593 | 7.5 | LOS A | 5.7 | 40.8 | 0.78 | 0.74 | 0.83 | 35.1 |
| All Vehicles | 2839 | 2.0 | 3496 | 2.0 | 0.603 | 7.2 | LOS A | 6.2 | 43.8 | 0.64 | 0.65 | 0.68 | 35.2 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^4]
## MOVEMENT SUMMARY

## - Site: 101 [Bruxner Hwy/Oliver Drive_Existing

Redistributed_PM (Site Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed <br> km/h |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 20 | 2.0 | 25 | 2.0 | 0.062 | 10.3 | LOS B | 0.3 | 1.9 | 0.75 | 0.86 | 0.75 | 32.4 |
| 2 T1 | 1 | 2.0 | 1 | 2.0 | 0.527 | 11.2 | LOS B | 3.6 | 25.6 | 0.88 | 1.04 | 1.11 | 28.4 |
| 3 R2 | 265 | 2.0 | 326 | 2.0 | 0.527 | 15.9 | LOS B | 3.6 | 25.6 | 0.88 | 1.04 | 1.11 | 27.4 |
| Approach | 286 | 2.0 | 352 | 2.0 | 0.527 | 15.5 | LOS B | 3.6 | 25.6 | 0.87 | 1.03 | 1.09 | 27.6 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 289 | 2.0 | 356 | 2.0 | 0.658 | 5.5 | LOS A | 7.0 | 49.5 | 0.64 | 0.56 | 0.64 | 36.5 |
| 5 T1 | 1103 | 2.0 | 1358 | 2.0 | 0.658 | 5.7 | LOSA | 7.0 | 49.5 | 0.66 | 0.57 | 0.66 | 36.3 |
| 6 R2 | 13 | 2.0 | 16 | 2.0 | 0.658 | 10.4 | LOS B | 6.8 | 48.2 | 0.68 | 0.58 | 0.68 | 34.2 |
| Approach | 1405 | 2.0 | 1730 | 2.0 | 0.658 | 5.7 | LOS A | 7.0 | 49.5 | 0.66 | 0.57 | 0.66 | 36.3 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 46 | 2.0 | 57 | 2.0 | 0.136 | 10.1 | LOS B | 0.6 | 4.4 | 0.78 | 0.89 | 0.78 | 32.7 |
| 8 T1 | 2 | 2.0 | 2 | 2.0 | 0.235 | 8.6 | LOS A | 1.3 | 9.0 | 0.82 | 0.94 | 0.82 | 31.0 |
| 9 R2 | 112 | 2.0 | 138 | 2.0 | 0.235 | 13.2 | LOS B | 1.3 | 9.0 | 0.82 | 0.94 | 0.82 | 29.8 |
| Approach | 160 | 2.0 | 197 | 2.0 | 0.235 | 12.3 | LOS B | 1.3 | 9.0 | 0.81 | 0.92 | 0.81 | 30.5 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 31 | 2.0 | 38 | 2.0 | 0.598 | 6.7 | LOS A | 5.9 | 41.8 | 0.77 | 0.68 | 0.80 | 35.1 |
| 11 T1 | 999 | 2.0 | 1230 | 2.0 | 0.598 | 7.1 | LOS A | 5.9 | 41.8 | 0.78 | 0.71 | 0.82 | 35.0 |
| 12 R2 | 34 | 2.0 | 42 | 2.0 | 0.598 | 12.1 | LOS B | 5.8 | 41.4 | 0.79 | 0.76 | 0.85 | 33.1 |
| Approach | 1064 | 2.0 | 1310 | 2.0 | 0.598 | 7.2 | LOS A | 5.9 | 41.8 | 0.78 | 0.72 | 0.82 | 35.0 |
| All Vehicles | 2915 | 2.0 | 3590 | 2.0 | 0.658 | 7.6 | LOS A | 7.0 | 49.5 | 0.73 | 0.69 | 0.77 | 34.3 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^5]
## MOVEMENT SUMMARY

(10) Site: 102 [Oliver Drive/Holland St_Existing Redistributed_AM
(Site Folder: Bruxner Highway Rezoning)]
Stop Control
Site Category: Existing Design
Stop (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INF } \\ & \text { VOLL } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \mathrm{HV} \text { ] } \\ & \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay $\qquad$ sec | Level of Service |  | CK OF UE Dist ] m | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 66 | 2.0 | 81 | 2.0 | 0.105 | 5.6 | LOS A | 0.5 | 3.3 | 0.09 | 0.52 | 0.09 | 53.5 |
| 2 T1 | 7 | 2.0 | 9 | 2.0 | 0.105 | 0.1 | LOS A | 0.5 | 3.3 | 0.09 | 0.52 | 0.09 | 55.0 |
| 3 R2 | 79 | 2.0 | 97 | 2.0 | 0.105 | 5.6 | LOS A | 0.5 | 3.3 | 0.09 | 0.52 | 0.09 | 53.0 |
| Approach | 152 | 2.0 | 187 | 2.0 | 0.105 | 5.3 | NA | 0.5 | 3.3 | 0.09 | 0.52 | 0.09 | 53.3 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 64 | 2.0 | 79 | 2.0 | 0.316 | 8.1 | LOS A | 1.5 | 10.3 | 0.07 | 1.04 | 0.07 | 51.0 |
| $5 \quad$ T1 | 188 | 2.0 | 232 | 2.0 | 0.316 | 9.4 | LOS A | 1.5 | 10.3 | 0.07 | 1.04 | 0.07 | 50.8 |
| 6 R2 | 6 | 2.0 | 7 | 2.0 | 0.316 | 11.6 | LOS B | 1.5 | 10.3 | 0.07 | 1.04 | 0.07 | 50.5 |
| Approach | 258 | 2.0 | 318 | 2.0 | 0.316 | 9.1 | LOS A | 1.5 | 10.3 | 0.07 | 1.04 | 0.07 | 50.8 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 16 | 2.0 | 20 | 2.0 | 0.028 | 5.8 | LOS A | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 53.7 |
| 8 T1 | 6 | 2.0 | 7 | 2.0 | 0.028 | 0.2 | LOS A | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 55.2 |
| 9 R2 | 18 | 2.0 | 22 | 2.0 | 0.028 | 5.7 | LOS A | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 53.2 |
| Approach | 40 | 2.0 | 49 | 2.0 | 0.028 | 4.9 | NA | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 53.7 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 17 | 2.0 | 21 | 2.0 | 0.469 | 9.0 | LOS A | 3.1 | 21.8 | 0.23 | 1.03 | 0.29 | 49.8 |
| 11 T1 | 201 | 2.0 | 248 | 2.0 | 0.469 | 10.1 | LOS B | 3.1 | 21.8 | 0.23 | 1.03 | 0.29 | 49.5 |
| 12 R 2 | 90 | 2.0 | 111 | 2.0 | 0.469 | 14.1 | LOS B | 3.1 | 21.8 | 0.23 | 1.03 | 0.29 | 49.3 |
| Approach | 308 | 2.0 | 379 | 2.0 | 0.469 | 11.2 | LOS B | 3.1 | 21.8 | 0.23 | 1.03 | 0.29 | 49.5 |
| All <br> Vehicles | 758 | 2.0 | 934 | 2.0 | 0.469 | 9.0 | NA | 3.1 | 21.8 | 0.14 | 0.90 | 0.17 | 50.9 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:44 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner HighwaylBruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

(9il) Site: 102 [Oliver Drive/Holland St_Existing Redistributed_PM (Site Folder: Bruxner Highway Rezoning)]

## Stop Control

Site Category: Existing Design
Stop (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { JT } \\ & \text { WES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service |  | CK OF <br> UE Dist ] m | Prop. Que | Effective Stop Rate |  | Aver Speed <br> km/h |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 39 | 2.0 | 48 | 2.0 | 0.057 | 5.6 | LOSA | 0.2 | 1.7 | 0.05 | 0.54 | 0.05 | 53.6 |
| 2 T1 | 4 | 2.0 | 5 | 2.0 | 0.057 | 0.0 | LOS A | 0.2 | 1.7 | 0.05 | 0.54 | 0.05 | 55.1 |
| 3 R2 | 41 | 2.0 | 50 | 2.0 | 0.057 | 5.5 | LOSA | 0.2 | 1.7 | 0.05 | 0.54 | 0.05 | 53.1 |
| Approach | 84 | 2.0 | 103 | 2.0 | 0.057 | 5.3 | NA | 0.2 | 1.7 | 0.05 | 0.54 | 0.05 | 53.4 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 55 | 2.0 | 68 | 2.0 | 0.403 | 8.1 | LOS A | 2.1 | 14.7 | 0.07 | 1.04 | 0.07 | 51.2 |
| 5 T1 | 271 | 2.0 | 334 | 2.0 | 0.403 | 8.8 | LOSA | 2.1 | 14.7 | 0.07 | 1.04 | 0.07 | 50.9 |
| 6 R2 | 14 | 2.0 | 17 | 2.0 | 0.403 | 12.7 | LOS B | 2.1 | 14.7 | 0.07 | 1.04 | 0.07 | 50.7 |
| Approach | 340 | 2.0 | 419 | 2.0 | 0.403 | 8.9 | LOS A | 2.1 | 14.7 | 0.07 | 1.04 | 0.07 | 51.0 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 6 | 2.0 | 7 | 2.0 | 0.025 | 5.7 | LOS A | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 53.7 |
| 8 T1 | 4 | 2.0 | 5 | 2.0 | 0.025 | 0.1 | LOS A | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 55.1 |
| 9 R2 | 25 | 2.0 | 31 | 2.0 | 0.025 | 5.6 | LOS A | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 53.1 |
| Approach | 35 | 2.0 | 43 | 2.0 | 0.025 | 5.0 | NA | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 53.4 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 25 | 2.0 | 31 | 2.0 | 0.434 | 8.3 | LOS A | 2.4 | 17.2 | 0.12 | 1.03 | 0.13 | 50.7 |
| 11 T1 | 252 | 2.0 | 310 | 2.0 | 0.434 | 8.9 | LOS A | 2.4 | 17.2 | 0.12 | 1.03 | 0.13 | 50.5 |
| 12 R 2 | 50 | 2.0 | 62 | 2.0 | 0.434 | 14.3 | LOS B | 2.4 | 17.2 | 0.12 | 1.03 | 0.13 | 50.2 |
| Approach | 327 | 2.0 | 403 | 2.0 | 0.434 | 9.7 | LOS A | 2.4 | 17.2 | 0.12 | 1.03 | 0.13 | 50.5 |
| All <br> Vehicles | 786 | 2.0 | 968 | 2.0 | 0.434 | 8.6 | NA | 2.4 | 17.2 | 0.10 | 0.96 | 0.10 | 51.1 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:45 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

## - Site: 101 [Bruxner Hwy/Oliver Drive_Cumulative_AM (Site

Folder: Bruxner Highway Rezoning)]
Roundbaout
Site Category: Existing Design
Roundabout
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INF } \\ & \text { VOLL } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | JT <br> MES HV ] \% |  | $\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay $\qquad$ | Level of Service | $\begin{aligned} & \text { 95\% B } \\ & \text { QU } \\ & \text { [ Veh. } \\ & \text { veh } \end{aligned}$ | CK OF UE Dist ] m | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed km/h |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 292 | 2.0 | 360 | 2.0 | 0.954 | 45.7 | LOS D | 12.4 | 88.0 | 1.00 | 1.54 | 2.71 | 13.1 |
| 2 T1 | 3 | 2.0 | 4 | 2.0 | 0.742 | 17.0 | LOS B | 6.2 | 44.5 | 0.98 | 1.15 | 1.44 | 24.1 |
| 3 R2 | 297 | 2.0 | 366 | 2.0 | 0.742 | 21.7 | LOS C | 6.2 | 44.5 | 0.98 | 1.15 | 1.44 | 23.4 |
| Approach | 592 | 2.0 | 729 | 2.0 | 0.954 | 33.5 | LOS C | 12.4 | 88.0 | 0.99 | 1.34 | 2.07 | 17.3 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 310 | 2.0 | 382 | 2.0 | 0.951 | 28.1 | LOS C | 30.4 | 216.7 | 1.00 | 1.51 | 2.34 | 19.0 |
| 5 T1 | 1112 | 2.0 | 1370 | 2.0 | 0.951 | 30.2 | LOS C | 30.4 | 216.7 | 1.00 | 1.55 | 2.41 | 18.3 |
| 6 R2 | 48 | 2.0 | 59 | 2.0 | 0.951 | 36.6 | LOS D | 28.0 | 199.6 | 1.00 | 1.58 | 2.46 | 17.4 |
| Approach | 1470 | 2.0 | 1810 | 2.0 | 0.951 | 30.0 | LOS C | 30.4 | 216.7 | 1.00 | 1.54 | 2.39 | 18.4 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 34 | 2.0 | 42 | 2.0 | 0.139 | 12.2 | LOS B | 0.7 | 4.9 | 0.85 | 0.92 | 0.85 | 30.0 |
| 8 T1 | 1 | 2.0 | 1 | 2.0 | 0.265 | 10.6 | LOS B | 1.6 | 11.1 | 0.91 | 0.97 | 0.91 | 28.9 |
| 9 R2 | 93 | 2.0 | 115 | 2.0 | 0.265 | 15.3 | LOS B | 1.6 | 11.1 | 0.91 | 0.97 | 0.91 | 27.9 |
| Approach | 128 | 2.0 | 158 | 2.0 | 0.265 | 14.4 | LOS B | 1.6 | 11.1 | 0.89 | 0.96 | 0.89 | 28.4 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 108 | 2.0 | 133 | 2.0 | 0.815 | 12.3 | LOS B | 14.0 | 99.9 | 1.00 | 1.02 | 1.36 | 30.3 |
| 11 T1 | 918 | 2.0 | 1131 | 2.0 | 0.815 | 12.9 | LOS B | 14.0 | 99.9 | 1.00 | 1.04 | 1.39 | 29.2 |
| 12 R 2 | 307 | 2.0 | 378 | 2.0 | 0.815 | 18.8 | LOS B | 13.4 | 95.4 | 1.00 | 1.09 | 1.43 | 26.2 |
| Approach | 1333 | 2.0 | 1642 | 2.0 | 0.815 | 14.2 | LOS B | 14.0 | 99.9 | 1.00 | 1.05 | 1.39 | 28.5 |
| All <br> Vehicles | 3523 | 2.0 | 4339 | 2.0 | 0.954 | 24.1 | LOS C | 30.4 | 216.7 | 0.99 | 1.30 | 1.91 | 21.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^6]
## MOVEMENT SUMMARY

## - Site: 101 [Bruxner Hwy/Oliver Drive_Cumulative_PM (Site <br> Folder: Bruxner Highway Rezoning)]

Roundbaout
Site Category: Existing Design
Roundabout
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { IN } \\ & \text { VOL } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{gathered} \text { JT } \\ \text { MES } \\ \text { HV ] } \\ \% \end{gathered}$ | $\begin{gathered} \text { DEM } \\ \text { FLC } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \mathrm{HV} \text { ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay $\qquad$ sec | Level of Service $\qquad$ | 95\% B <br> QU <br> [ Veh. veh | CK OF <br> UE <br> Dist ] <br> m | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: Oliver Drive |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 305 | 2.0 | 376 | 2.0 | 0.993 | 61.9 | LOS $E^{11}$ | 16.8 | 119.9 | 1.00 | 1.77 | 3.42 | 10.3 |
| 2 T1 | 1 | 2.0 | 1 | 2.0 | 0.853 | 24.3 | LOS C | 9.1 | 64.9 | 1.00 | 1.29 | 1.86 | 20.2 |
| 3 R2 | 346 | 2.0 | 426 | 2.0 | 0.853 | 29.0 | LOS C | 9.1 | 64.9 | 1.00 | 1.29 | 1.86 | 19.7 |
| Approach | 652 | 2.0 | 803 | 2.0 | 0.993 | 44.4 | LOS D | 16.8 | 119.9 | 1.00 | 1.52 | 2.59 | 14.2 |
| East: Bruxner Hwy East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 349 | 2.0 | 430 | 2.0 | 0.941 | 26.0 | LOS C | 28.6 | 203.5 | 1.00 | 1.46 | 2.23 | 19.9 |
| 5 T1 | 1103 | 2.0 | 1358 | 2.0 | 0.941 | 28.2 | LOS C | 28.6 | 203.5 | 1.00 | 1.50 | 2.30 | 19.2 |
| 6 R2 | 20 | 2.0 | 25 | 2.0 | 0.941 | 34.3 | LOS C | 26.4 | 188.3 | 1.00 | 1.53 | 2.35 | 18.3 |
| Approach | 1472 | 2.0 | 1813 | 2.0 | 0.941 | 27.8 | LOS C | 28.6 | 203.5 | 1.00 | 1.49 | 2.28 | 19.4 |
| North: Pineapple Road |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 47 | 2.0 | 58 | 2.0 | 0.203 | 13.3 | LOS B | 1.0 | 7.3 | 0.87 | 0.93 | 0.87 | 28.8 |
| 8 T1 | 2 | 2.0 | 2 | 2.0 | 0.362 | 12.3 | LOS B | 2.3 | 16.1 | 0.94 | 1.00 | 1.01 | 27.5 |
| 9 R2 | 119 | 2.0 | 147 | 2.0 | 0.362 | 17.0 | LOS B | 2.3 | 16.1 | 0.94 | 1.00 | 1.01 | 26.5 |
| Approach | 168 | 2.0 | 207 | 2.0 | 0.362 | 15.9 | LOS B | 2.3 | 16.1 | 0.92 | 0.98 | 0.97 | 27.1 |
| West: Bruxner Hwy West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 59 | 2.0 | 73 | 2.0 | 0.848 | 14.4 | LOS B | 16.4 | 116.7 | 1.00 | 1.09 | 1.49 | 28.3 |
| 11 T1 | 999 | 2.0 | 1230 | 2.0 | 0.848 | 15.2 | LOS B | 16.4 | 116.7 | 1.00 | 1.11 | 1.51 | 27.3 |
| 12 R 2 | 280 | 2.0 | 345 | 2.0 | 0.848 | 21.2 | LOS C | 15.5 | 110.4 | 1.00 | 1.16 | 1.57 | 24.5 |
| Approach | 1338 | 2.0 | 1648 | 2.0 | 0.848 | 16.4 | LOS B | 16.4 | 116.7 | 1.00 | 1.12 | 1.52 | 26.7 |
| All <br> Vehicles | 3630 | 2.0 | 4471 | 2.0 | 0.993 | 26.0 | LOS C | 28.6 | 203.5 | 1.00 | 1.34 | 2.00 | 20.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
11 Level of Service is worse than the Level of Service Target specified in the Parameter Settings dialog.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:46 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

Site: 102 [Oliver Drive/Holland St_Cumulative_AM (Site Folder: Bruxner Highway Rezoning)]
Stop Control
Site Category: Existing Design
Stop (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$ |  | $\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver Delay <br> sec | Level of Service | $\begin{gathered} 95 \% \\ \text { Q } \\ \text { [ Veh. } \\ \text { veh } \end{gathered}$ | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed <br> km/h |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 66 | 2.0 | 81 | 2.0 | 0.133 | 5.6 | LOSA | 0.6 | 4.6 | 0.10 | 0.53 | 0.10 | 53.4 |
| 2 T1 | 7 | 2.0 | 9 | 2.0 | 0.133 | 0.1 | LOS A | 0.6 | 4.6 | 0.10 | 0.53 | 0.10 | 54.9 |
| 3 R2 | 119 | 2.0 | 147 | 2.0 | 0.133 | 5.6 | LOS A | 0.6 | 4.6 | 0.10 | 0.53 | 0.10 | 52.9 |
| Approach | 192 | 2.0 | 236 | 2.0 | 0.133 | 5.4 | NA | 0.6 | 4.6 | 0.10 | 0.53 | 0.10 | 53.2 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 87 | 2.0 | 107 | 2.0 | 0.437 | 8.5 | LOSA | 2.7 | 18.9 | 0.07 | 1.05 | 0.08 | 50.4 |
| 5 T1 | 247 | 2.0 | 304 | 2.0 | 0.437 | 10.4 | LOS B | 2.7 | 18.9 | 0.07 | 1.05 | 0.08 | 50.1 |
| 6 R2 | 6 | 2.0 | 7 | 2.0 | 0.437 | 15.4 | LOS C | 2.7 | 18.9 | 0.07 | 1.05 | 0.08 | 49.9 |
| Approach | 340 | 2.0 | 419 | 2.0 | 0.437 | 10.0 | LOS B | 2.7 | 18.9 | 0.07 | 1.05 | 0.08 | 50.2 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 16 | 2.0 | 20 | 2.0 | 0.028 | 5.8 | LOS A | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 53.7 |
| 8 T1 | 6 | 2.0 | 7 | 2.0 | 0.028 | 0.2 | LOS A | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 55.2 |
| 9 R2 | 18 | 2.0 | 22 | 2.0 | 0.028 | 5.7 | LOS A | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 53.2 |
| Approach | 40 | 2.0 | 49 | 2.0 | 0.028 | 4.9 | NA | 0.1 | 0.8 | 0.17 | 0.45 | 0.17 | 53.7 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L <br> 11  <br> 12  | 17 | 2.0 | 21 | 2.0 | 0.656 | 10.9 | LOS B | 6.4 | 45.8 | 0.31 | 1.09 | 0.55 | 47.8 |
|  | 291 | 2.0 | 358 | 2.0 | 0.656 | 12.8 | LOS B | 6.4 | 45.8 | 0.31 | 1.09 | 0.55 | 47.5 |
|  | 90 | 2.0 | 111 | 2.0 | 0.656 | 20.6 | LOS C | 6.4 | 45.8 | 0.31 | 1.09 | 0.55 | 47.3 |
| Approach | 398 | 2.0 | 490 | 2.0 | 0.656 | 14.5 | LOS B | 6.4 | 45.8 | 0.31 | 1.09 | 0.55 | 47.5 |
| All <br> Vehicles | $970 \quad 2.0$ |  | 11952.0 |  | 0.656 | 10.7 | NA | 6.4 | 45.8 | 0.18 | 0.94 | 0.28 | 49.7 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:46 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

Site: 102 [Oliver Drive/Holland St_Cumulative_PM (Site Folder: Bruxner Highway Rezoning)]
Stop Control
Site Category: Existing Design
Stop (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID |  | $\begin{aligned} & \text { JT } \\ & \text { WES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV ] } \\ & \% \\ & \hline \end{aligned}$ | Deg. Satn <br> v/c | Aver. Delay <br> sec | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \mathrm{m} \end{gathered}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed <br> km/h |
| South: Taylor Rd |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 39 | 2.0 | 48 | 2.0 | 0.074 | 5.6 | LOS A | 0.3 | 2.4 | 0.06 | 0.54 | 0.06 | 53.6 |
| 2 T1 | 4 | 2.0 | 5 | 2.0 | 0.074 | 0.0 | LOS A | 0.3 | 2.4 | 0.06 | 0.54 | 0.06 | 55.0 |
| 3 R 2 | 65 | 2.0 | 80 | 2.0 | 0.074 | 5.5 | LOSA | 0.3 | 2.4 | 0.06 | 0.54 | 0.06 | 53.0 |
| Approach | 108 | 2.0 | 133 | 2.0 | 0.074 | 5.3 | NA | 0.3 | 2.4 | 0.06 | 0.54 | 0.06 | 53.3 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 96 | 2.0 | 118 | 2.0 | 0.567 | 8.9 | LOS A | 5.0 | 35.5 | 0.07 | 1.05 | 0.09 | 50.3 |
| 5 T1 | 362 | 2.0 | 446 | 2.0 | 0.567 | 10.2 | LOS B | 5.0 | 35.5 | 0.07 | 1.05 | 0.09 | 50.1 |
| 6 R2 | 14 | 2.0 | 17 | 2.0 | 0.567 | 17.2 | LOS C | 5.0 | 35.5 | 0.07 | 1.05 | 0.09 | 49.8 |
| Approach | 472 | 2.0 | 581 | 2.0 | 0.567 | 10.1 | LOS B | 5.0 | 35.5 | 0.07 | 1.05 | 0.09 | 50.1 |
| North: Holland St |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 6 | 2.0 | 7 | 2.0 | 0.025 | 5.7 | LOS A | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 53.7 |
| 8 T1 | 4 | 2.0 | 5 | 2.0 | 0.025 | 0.1 | LOS A | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 55.1 |
| 9 R 2 | 25 | 2.0 | 31 | 2.0 | 0.025 | 5.6 | LOS A | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 53.1 |
| Approach | 35 | 2.0 | 43 | 2.0 | 0.025 | 5.0 | NA | 0.1 | 0.8 | 0.14 | 0.49 | 0.14 | 53.4 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 L2 | 25 | 2.0 | 31 | 2.0 | 0.562 | 9.6 | LOS A | 4.9 | 34.9 | 0.16 | 1.04 | 0.22 | 49.3 |
| 11 T1 | 314 | 2.0 | 387 | 2.0 | 0.562 | 10.5 | LOS B | 4.9 | 34.9 | 0.16 | 1.04 | 0.22 | 49.0 |
| 12 R 2 | 50 | 2.0 | 62 | 2.0 | 0.562 | 21.5 | LOS C | 4.9 | 34.9 | 0.16 | 1.04 | 0.22 | 48.8 |
| Approach | 389 | 2.0 | 479 | 2.0 | 0.562 | 11.9 | LOS B | 4.9 | 34.9 | 0.16 | 1.04 | 0.22 | 49.0 |
| All <br> Vehicles | 1004 | 2.0 | 1237 | 2.0 | 0.567 | 10.1 | NA | 5.0 | 35.5 | 0.11 | 0.97 | 0.14 | 50.1 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

## SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:47 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner HighwaylBruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 103 [Residentail Accees 1_AM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | INPUTVOLUMES[ TotalHV ] ]veh/h |  | $\begin{gathered} \text { DEMAND } \\ \text { FLOWS } \\ \text { [ Total } \\ \text { veh/h } \\ \text { ve ] } \end{gathered}$ |  | Deg. Satn $\mathrm{v} / \mathrm{c}$ | Aver. Level of Delay Servicesec |  | 95\% BACK OF <br> QUEUE <br> [ Veh. Dist ] <br> veh m |  | Prop. Effective Que Stop Rate |  | Aver. Aver. <br> No. Speed Cycles <br> km/h |  |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 437 | 0.0 | 538 | 0.0 | 0.282 | 0.1 | LOS A | 0.1 | 0.7 | 0.02 | 0.01 | 0.02 | 59.7 |
| 3 R2 | 4 | 0.0 | 5 | 0.0 | 0.282 | 10.5 | LOS B | 0.1 | 0.7 | 0.02 | 0.01 | 0.02 | 56.6 |
| Approach | 441 | 0.0 | 543 | 0.0 | 0.282 | 0.2 | NA | 0.1 | 0.7 | 0.02 | 0.01 | 0.02 | 59.7 |
| East: Residentail Access 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 19 | 0.0 | 23 | 0.0 | 0.344 | 10.6 | LOS B | 1.2 | 8.6 | 0.81 | 0.97 | 1.00 | 41.6 |
| 6 R2 | 74 | 0.0 | 91 | 0.0 | 0.344 | 18.8 | LOS C | 1.2 | 8.6 | 0.81 | 0.97 | 1.00 | 33.5 |
| Approach | 93 | 0.0 | 115 | 0.0 | 0.344 | 17.1 | LOS C | 1.2 | 8.6 | 0.81 | 0.97 | 1.00 | 35.6 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 20 | 0.0 | 25 | 0.0 | 0.368 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 55.6 |
| 8 T1 | 562 | 0.0 | 692 | 0.0 | 0.368 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 59.5 |
| Approach | 582 | 0.0 | 717 | 0.0 | 0.368 | 0.2 | NA | 0.0 | 0.0 | 0.00 | 0.02 | 0.00 | 59.4 |
| All <br> Vehicles | 1116 | 0.0 | 1374 | 0.0 | 0.368 | 1.6 | NA | 1.2 | 8.6 | 0.08 | 0.09 | 0.09 | 57.3 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:47 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

## $\nabla$ Site: 103 [Residentail Accees 1_PM (Site Folder: Bruxner

Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { LES } \\ & \text { HV ] } \\ & \% \end{aligned}$ | $\begin{array}{r} \text { DEN } \\ \text { FLC } \\ \text { [ Total } \\ \text { veh/h } \end{array}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \mathrm{HV} \text { ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay $\qquad$ sec | Level of Service | 95\% <br> QU <br> [ Veh. <br> veh | CK OF UE Dist ] m | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $2 \quad$ T1 | 604 | 0.0 | 744 | 0.0 | 0.414 | 0.5 | LOS A | 0.7 | 4.7 | 0.09 | 0.02 | 0.12 | 58.9 |
| 3 R 2 | 21 | 0.0 | 26 | 0.0 | 0.414 | 11.4 | LOS B | 0.7 | 4.7 | 0.09 | 0.02 | 0.12 | 55.8 |
| Approach | 625 | 0.0 | 770 | 0.0 | 0.414 | 0.8 | NA | 0.7 | 4.7 | 0.09 | 0.02 | 0.12 | 58.7 |
| East: Residential Access 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 5 | 0.0 | 6 | 0.0 | 0.126 | 8.0 | LOS A | 0.4 | 2.6 | 0.81 | 0.91 | 0.81 | 41.0 |
| 6 R2 | 21 | 0.0 | 26 | 0.0 | 0.126 | 20.5 | LOS C | 0.4 | 2.6 | 0.81 | 0.91 | 0.81 | 32.8 |
| Approach | 26 | 0.0 | 32 | 0.0 | 0.126 | 18.1 | LOS C | 0.4 | 2.6 | 0.81 | 0.91 | 0.81 | 34.8 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 86 | 0.0 | 106 | 0.0 | 0.363 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 54.3 |
| 8 T1 | 485 | 0.0 | 597 | 0.0 | 0.363 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.6 |
| Approach | 571 | 0.0 | 703 | 0.0 | 0.363 | 0.9 | NA | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.2 |
| All <br> Vehicles | 1222 | 0.0 | 1505 | 0.0 | 0.414 | 1.2 | NA | 0.7 | 4.7 | 0.06 | 0.07 | 0.08 | 57.9 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:47 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 104 [Residentail/Local Centre Accees 2_AM (Site
Folder: Bruxner Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | INP VOL [ Total veh/h | UT <br> MES <br> HV ] <br> \% | $\begin{gathered} \text { DEI } \\ \text { FL } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { ND } \\ & \text { IS } \\ & \text { HV ] } \\ & \% \end{aligned}$ | Deg. Satn v/c | Aver. Delay <br> sec | Level of Service | 95\% <br> QU <br> [ Veh. veh | CK OF UE Dist ] m | Prop. Que | Effective Stop Rate | Aver. No. <br> Cycles | Aver. Speed <br> km/h |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 296 | 0.0 | 365 | 0.0 | 0.221 | 0.6 | LOS A | 0.5 | 3.2 | 0.14 | 0.05 | 0.14 | 58.6 |
| 3 R2 | 22 | 0.0 | 27 | 0.0 | 0.221 | 9.9 | LOS A | 0.5 | 3.2 | 0.14 | 0.05 | 0.14 | 55.3 |
| Approach | 318 | 0.0 | 392 | 0.0 | 0.221 | 1.3 | NA | 0.5 | 3.2 | 0.14 | 0.05 | 0.14 | 58.4 |
| East: Resi/Local Cntr Access 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 37 | 0.0 | 46 | 0.0 | 0.512 | 11.1 | LOS B | 2.3 | 16.3 | 0.79 | 1.03 | 1.21 | 42.5 |
| 6 R2 | 145 | 0.0 | 179 | 0.0 | 0.512 | 17.1 | LOS C | 2.3 | 16.3 | 0.79 | 1.03 | 1.21 | 40.1 |
| Approach | 182 | 0.0 | 224 | 0.0 | 0.512 | 15.9 | LOS C | 2.3 | 16.3 | 0.79 | 1.03 | 1.21 | 40.6 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 90 | 0.0 | 111 | 0.0 | 0.370 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 55.9 |
| 8 T1 | 491 | 0.0 | 605 | 0.0 | 0.370 | 0.1 | LOS A | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.8 |
| Approach | 581 | 0.0 | 716 | 0.0 | 0.370 | 1.0 | NA | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 58.5 |
| All <br> Vehicles | 1081 | 0.0 | 1331 | 0.0 | 0.512 | 3.6 | NA | 2.3 | 16.3 | 0.17 | 0.24 | 0.24 | 55.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:48 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

## $\nabla$ Site: 104 [Residentail/Local Centre Accees 2_PM (Site Folder:

Bruxner Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{gathered} \text { IN } \\ \text { VOL } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV ] } \\ & \% \end{aligned}$ |  | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn <br> v/c | Aver. Delay $\qquad$ sec | Level of Service |  | $\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist ] } \\ & \text { m } \end{aligned}$ | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed km/h |
| South: Oliver Dr South |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 T1 | 532 | 0.0 | 655 | 0.0 | 0.388 | 0.6 | LOS A | 1.0 | 6.8 | 0.14 | 0.05 | 0.19 | 58.6 |
| 3 R2 | 39 | 0.0 | 48 | 0.0 | 0.388 | 9.8 | LOS A | 1.0 | 6.8 | 0.14 | 0.05 | 0.19 | 55.3 |
| Approach | 571 | 0.0 | 703 | 0.0 | 0.388 | 1.3 | NA | 1.0 | 6.8 | 0.14 | 0.05 | 0.19 | 58.5 |
| East: Resi/Local Cntr Access 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 23 | 0.0 | 28 | 0.0 | 0.400 | 9.1 | LOS A | 1.5 | 10.7 | 0.77 | 0.96 | 1.02 | 41.8 |
| 6 R2 | 93 | 0.0 | 115 | 0.0 | 0.400 | 18.8 | LOS C | 1.5 | 10.7 | 0.77 | 0.96 | 1.02 | 39.3 |
| Approach | 116 | 0.0 | 143 | 0.0 | 0.400 | 16.9 | LOS C | 1.5 | 10.7 | 0.77 | 0.96 | 1.02 | 39.9 |
| North: Oliver Dr North |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 L2 | 157 | 0.0 | 193 | 0.0 | 0.314 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 54.7 |
| 8 T1 | 333 | 0.0 | 410 | 0.0 | 0.314 | 0.1 | LOS A | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 57.9 |
| Approach | 490 | 0.0 | 603 | 0.0 | 0.314 | 1.8 | NA | 0.0 | 0.0 | 0.00 | 0.19 | 0.00 | 57.1 |
| All <br> Vehicles | 1177 | 0.0 | 1450 | 0.0 | 0.400 | 3.0 | NA | 1.5 | 10.7 | 0.14 | 0.20 | 0.19 | 56.0 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:48 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 105 [Industrial Access_AM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV ] } \\ & \% \end{aligned}$ | $\begin{gathered} \text { DEM } \\ \text { FLC } \\ \text { [ Total } \\ \text { veh/h } \end{gathered}$ | $\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV ] } \\ \% \end{gathered}$ | Deg. Satn $\qquad$ v/c | Aver. Delay $\qquad$ sec | Level of Service |  | $\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist ] } \\ \text { m } \end{gathered}$ | Prop. Que | Effective Stop Rate |  | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: Industrial Access |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 26 | 0.0 | 32 | 0.0 | 0.190 | 6.8 | LOS A | 0.6 | 4.5 | 0.56 | 0.78 | 0.56 | 50.2 |
| 3 R2 | 63 | 0.0 | 78 | 0.0 | 0.190 | 11.6 | LOS B | 0.6 | 4.5 | 0.56 | 0.78 | 0.56 | 49.7 |
| Approach | 89 | 0.0 | 110 | 0.0 | 0.190 | 10.2 | LOS B | 0.6 | 4.5 | 0.56 | 0.78 | 0.56 | 49.8 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 252 | 0.0 | 310 | 0.0 | 0.341 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.28 | 0.00 | 55.8 |
| $5 \quad$ T1 | 276 | 0.0 | 340 | 0.0 | 0.341 | 0.1 | LOS A | 0.0 | 0.0 | 0.00 | 0.28 | 0.00 | 57.3 |
| Approach | 528 | 0.0 | 650 | 0.0 | 0.341 | 2.7 | NA | 0.0 | 0.0 | 0.00 | 0.28 | 0.00 | 56.6 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 255 | 0.0 | 314 | 0.0 | 0.308 | 2.3 | LOS A | 1.8 | 12.9 | 0.46 | 0.24 | 0.54 | 55.9 |
| 12 R 2 | 104 | 0.0 | 128 | 0.0 | 0.308 | 9.6 | LOS A | 1.8 | 12.9 | 0.46 | 0.24 | 0.54 | 53.9 |
| Approach | 359 | 0.0 | 442 | 0.0 | 0.308 | 4.4 | NA | 1.8 | 12.9 | 0.46 | 0.24 | 0.54 | 55.3 |
| All <br> Vehicles | 976 | 0.0 | 1202 | 0.0 | 0.341 | 4.0 | NA | 1.8 | 12.9 | 0.22 | 0.31 | 0.25 | 55.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:49 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9

## MOVEMENT SUMMARY

$\nabla$ Site: 105 [Industrial Access_PM (Site Folder: Bruxner
Highway Rezoning)]
New Site
Site Category: Proposed Design 1
Give-Way (Two-Way)
Design Life Analysis (Final Year): Results for 10 years

| Vehicle Movement Performance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mov Turn ID | $\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { [ Total } \\ & \text { veh/h } \end{aligned}$ | $\begin{aligned} & \text { JT } \\ & \text { LES } \\ & \text { HV ] } \\ & \% \end{aligned}$ | $\begin{array}{r} \text { DEN } \\ \text { FLC } \\ \text { [ Total } \\ \text { veh/h } \end{array}$ | $\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \mathrm{HV} \text { ] } \\ & \% \end{aligned}$ | Deg. Satn $\qquad$ v/c | Aver. Delay $\qquad$ sec | Level of Service | 95\% B <br> QU <br> [ Veh. veh | CK OF UE Dist ] m | Prop. Que | Effective Stop Rate | Aver. No. Cycles | Aver. Speed $\mathrm{km} / \mathrm{h}$ |
| South: Industrial Access |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 L2 | 104 | 0.0 | 128 | 0.0 | 0.670 | 10.5 | LOS B | 4.8 | 33.8 | 0.70 | 1.07 | 1.39 | 47.7 |
| 3 R 2 | 252 | 0.0 | 310 | 0.0 | 0.670 | 15.4 | LOS C | 4.8 | 33.8 | 0.70 | 1.07 | 1.39 | 47.3 |
| Approach | 356 | 0.0 | 438 | 0.0 | 0.670 | 14.0 | LOS B | 4.8 | 33.8 | 0.70 | 1.07 | 1.39 | 47.4 |
| East: Oliver Dr East |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 L2 | 63 | 0.0 | 78 | 0.0 | 0.227 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 57.4 |
| 5 T1 | 293 | 0.0 | 361 | 0.0 | 0.227 | 0.1 | LOS A | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 58.9 |
| Approach | 356 | 0.0 | 438 | 0.0 | 0.227 | 1.0 | NA | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 58.6 |
| West: Oliver Dr West |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 T1 | 319 | 0.0 | 393 | 0.0 | 0.230 | 0.3 | LOS A | 0.4 | 2.5 | 0.11 | 0.05 | 0.11 | 59.1 |
| 12 R 2 | 26 | 0.0 | 32 | 0.0 | 0.230 | 7.6 | LOS A | 0.4 | 2.5 | 0.11 | 0.05 | 0.11 | 56.9 |
| Approach | 345 | 0.0 | 425 | 0.0 | 0.230 | 0.8 | NA | 0.4 | 2.5 | 0.11 | 0.05 | 0.11 | 59.0 |
| All <br> Vehicles | 1057 | 0.0 | 1302 | 0.0 | 0.670 | 5.3 | NA | 4.8 | 33.8 | 0.27 | 0.41 | 0.50 | 54.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:49 PM
Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITEDIDocuments\Bruxner Highway\Bruxner Highway Rezoning Proposal.sip9


[^0]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:47 PM
    Project: C:\Userslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

[^1]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:47 PM
    Project: C:\Userslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

[^2]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:49 PM
    Project: C:\Userslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

[^3]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 7:24:49 PM
    Project: C:\Userslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

[^4]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:43 PM
    Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

[^5]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:27:44 PM
    Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

[^6]:    SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
    Organisation: BARKER RYAN STEWART | Licence: NETWORK / 1PC | Processed: Friday, September 23, 2022 4:28:08 PM
    Project: C:IUserslabdun.BRSIOneDrive - BARKER RYAN STEWART PTY LIMITED\Documents\Bruxner Highway\Bruxner Highway Rezoning
    Proposal.sip9

